In physiology, transduction is the translation of arriving stimulus into an action potential by a sensory receptor. It begins when stimulus changes the membrane potential of a receptor cell.
A receptor cell converts the energy in a stimulus into an electrical signal. Receptors are broadly split into two main categories: exteroceptors, which receive external sensory stimuli, and interoceptors, which receive internal sensory stimuli.
Visual phototransduction
In the visual system, sensory cells called rod and cone cells in the retina convert the physical energy of light signals into electrical impulses that travel to the brain. The light causes a conformational change in a protein called rhodopsin. This conformational change sets in motion a series of molecular events that result in a reduction of the electrochemical gradient of the photoreceptor. The decrease in the electrochemical gradient causes a reduction in the electrical signals going to the brain. Thus, in this example, more light hitting the photoreceptor results in the transduction of a signal into fewer electrical impulses, effectively communicating that stimulus to the brain. A change in neurotransmitter release is mediated through a second messenger system. The change in neurotransmitter release is by rods. Because of the change, a change in light intensity causes the response of the rods to be much slower than expected (for a process associated with the nervous system).
Neuronal encoding of sound
In the auditory system, sound vibrations (mechanical energy) are transduced into electrical energy by hair cells in the inner ear. Sound vibrations from an object cause vibrations in air molecules, which in turn, vibrate the ear drum. The movement of the eardrum causes the bones of the middle ear (the ossicles) to vibrate. These vibrations then pass into the cochlea, the organ of hearing. Within the cochlea, the hair cells on the sensory epithelium of the organ of Corti bend and cause movement of the basilar membrane.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The brain can be viewed as a network of neurons receiving sensory input and carrying out experience- and context-dependent computations through complex synaptic interactions to drive motor output, i.e
In physiology, the somatosensory system is the network of neural structures in the brain and body that produce the perception of touch (haptic perception), as well as temperature (thermoception), body position (proprioception), and pain. It is a subset of the sensory nervous system, which also represents visual, auditory, olfactory, and gustatory stimuli. Somatosensation begins when mechano- and thermosensitive structures in the skin or internal organs sense physical stimuli such as pressure on the skin (see mechanotransduction, nociception).
The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste (flavor). Taste is the perception stimulated when a substance in the mouth reacts chemically with taste receptor cells located on taste buds in the oral cavity, mostly on the tongue. Taste, along with the sense of smell and trigeminal nerve stimulation (registering texture, pain, and temperature), determines flavors of food and other substances.
The auditory system is the sensory system for the sense of hearing. It includes both the sensory organs (the ears) and the auditory parts of the sensory system. The outer ear funnels sound vibrations to the eardrum, increasing the sound pressure in the middle frequency range. The middle-ear ossicles further amplify the vibration pressure roughly 20 times. The base of the stapes couples vibrations into the cochlea via the oval window, which vibrates the perilymph liquid (present throughout the inner ear) and causes the round window to bulb out as the oval window bulges in.
Recent research has highlighted the crucial role of the processing of somatosensory signals involving the torso for global aspects of Bodily Self Consciousness (BSC), i.e., the experience of the conscious "I" as embodied and localized within bodily space. ...
EPFL2021
,
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory ...
Viral delivery of exogenous coding sequences into the inner ear has the potential for therapeutic benefit for patients suffering genetic or acquired hearing loss. To devise improved strategies for viral delivery, we investigated two injection techniques, r ...