Concept

Receptor (biochemistry)

Related courses (31)
PHYS-301: Biophysics : physics of the cell
In this course we will study the cell (minimum unit of life) and its components. We will study several key cellular features: Membranes, genomes, channels and receptors. We will apply the laws of phys
CH-411: Cellular signalling
Presentation of selected signalling pathways with emphasis on both the mechanism of action of the molecules involved, molecular interactions and the role of their spatio-temporal organization within t
CH-312: Dynamics of biomolecular processes
In this course we will discuss advanced biophysical topics, building on the framework established in the course "Macromolecular structure and interactions". The course is held in English.
CH-311: Macromolecular structure and interactions
This course covers the basic biophysical principles governing the thermodynamic and kinetic properties of biomacromolecules involved in chemical processes of life. The course is held in English.
BIO-478: Pharmacology and pharmacokinetics
This course introduces the student to the fudamentals of pharmacology, pharmacokinetics and drug-receptor interactions. It discusses also pharmacogenetics and chronopharmacology, to exemplify the chal
MSE-212: Biology for engineers
This course consists of an introduction to biology and more particularly to biology as a multidisciplinary field, emphasizing natural examples of materials engineering. It should therefore allow engin
BIO-212: Biological chemistry I
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
BIO-480: Neuroscience: from molecular mechanisms to disease
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
CH-603: Basic principles of drug action at the nervous system
The aim of this course is two-fold: i) to describe the molecular properties of some important drug targets ii) to illustrate some applications of drugs active at the nervous system
NX-450: Computational neurosciences: biophysics
The course introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies with a focus on the biophysical level.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.