Summary
The Tower of Hanoi (also called The problem of Benares Temple or Tower of Brahma or Lucas' Tower and sometimes pluralized as Towers, or simply pyramid puzzle) is a mathematical game or puzzle consisting of three rods and a number of disks of various diameters, which can slide onto any rod. The puzzle begins with the disks stacked on one rod in order of decreasing size, the smallest at the top, thus approximating a conical shape. The objective of the puzzle is to move the entire stack to the last rod, obeying the following rules: Only one disk may be moved at a time. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod. No disk may be placed on top of a disk that is smaller than it. With 3 disks, the puzzle can be solved in 7 moves. The minimal number of moves required to solve a Tower of Hanoi puzzle is 2n − 1, where n is the number of disks. The puzzle was invented by the French mathematician Édouard Lucas in 1883. Numerous myths regarding the ancient and mystical nature of the puzzle popped up almost immediately, including a myth about an Indian temple in Kashi Vishwanath containing a large room with three time-worn posts in it, surrounded by 64 golden disks. But, this story of Indian Kashi Vishwanath temple was spread tongue-in-cheek by a friend of Édouard Lucas. If the legend were true, and if the priests were able to move disks at a rate of one per second, using the smallest number of moves, it would take them 264 − 1 seconds or roughly 585 billion years to finish, which is about 42 times the estimated current age of the universe. There are many variations on this legend. For instance, in some tellings, the temple is a monastery, and the priests are monks. The temple or monastery may be in various locales including Hanoi, and may be associated with any religion. In some versions, other elements are introduced, such as the fact that the tower was created at the beginning of the world, or that the priests or monks may make only one move per day.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Related concepts (3)
Power of two
A power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. In a context where only integers are considered, n is restricted to non-negative values, so there are 1, 2, and 2 multiplied by itself a certain number of times. The first ten powers of 2 for non-negative values of n are: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... Because two is the base of the binary numeral system, powers of two are common in computer science.
Recursion (computer science)
In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion is one of the central ideas of computer science. The power of recursion evidently lies in the possibility of defining an infinite set of objects by a finite statement.
Binary number
A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" (one). The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because of the simplicity of the language and the noise immunity in physical implementation.