In aviation, airspeed is the speed of an aircraft relative to the air. Among the common conventions for qualifying airspeed are:
Indicated airspeed ("IAS"), what is read on an airspeed gauge connected to a Pitot-static system;
Calibrated airspeed ("CAS"), indicated airspeed adjusted for pitot system position and installation error;
Equivalent airspeed ("EAS"), calibrated airspeed adjusted for compressibility effects;
True airspeed ("TAS"), equivalent airspeed adjusted for air density, and is the speed of the aircraft through the air in which it is flying.
Calibrated airspeed is typically within a few knots of indicated airspeed, while equivalent airspeed decreases slightly from CAS as aircraft altitude increases or at high speeds.
With EAS constant, true airspeed increases as aircraft altitude increases. This is because air density decreases with higher altitude.
The measurement and indication of airspeed is ordinarily accomplished on board an aircraft by an airspeed indicator ("ASI") connected to a pitot-static system. The pitot-static system comprises one or more pitot probes (or tubes) facing the on-coming air flow to measure pitot pressure (also called stagnation, total or ram pressure) and one or more static ports to measure the static pressure in the air flow. These two pressures are compared by the ASI to give an IAS reading.
Airspeed is commonly given in knots (kn). Since 2010, the International Civil Aviation Organization (ICAO) recommends using kilometers per hour (km/h) for airspeed (and meters per second for wind speed on runways), but allows using the de facto standard of knots, and has no set date on when to stop.
The aviation industry in Russia and China as well as aircrew flying Russian/Chinese aircraft currently use km/h for reporting airspeed. Many present-day European glider planes also indicate airspeed in kilometers per hour. Some older planes, like German World War 2 planes, also indicated airspeed in kilometers per hour.
In high altitude flight, however, the Mach number is sometimes used for reporting airspeed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A pitot-static system is a system of pressure-sensitive instruments that is most often used in aviation to determine an aircraft's airspeed, Mach number, altitude, and altitude trend. A pitot-static system generally consists of a pitot tube, a static port, and the pitot-static instruments. Other instruments that might be connected are air data computers, flight data recorders, altitude encoders, cabin pressurization controllers, and various airspeed switches.
A pitot tube (ˈpiːtoʊ ; also pitot probe) measures fluid flow velocity. It was invented by a French engineer, Henri Pitot, in the early 18th century, and was modified to its modern form in the mid-19th century by a French scientist, Henry Darcy. It is widely used to determine the airspeed of aircraft; the water speed of boats; and the flow velocity of liquids, air, and gases in industry. The basic pitot tube consists of a tube pointing directly into the fluid flow.
The knot (nɒt) is a unit of speed equal to one nautical mile per hour, exactly 1.852km/h (approximately 1.151mph or 0.514m/s). The ISO standard symbol for the knot is kn. The same symbol is preferred by the Institute of Electrical and Electronics Engineers (IEEE), while kt is also common, especially in aviation, where it is the form recommended by the International Civil Aviation Organization (ICAO). The knot is a non-SI unit. The knot is used in meteorology, and in maritime and air navigation.
Small-scale turbomachinery is increasingly used in carbon-free energy conversion systems, such as commercial or domestic scale heat pumps, fuels cells for transportation and waste heat recovery. The usage of aerodynamic bearings allows the design of compac ...
A round felt yurt is a traditional dwelling of Central Asian nomads that have survived over 2000 years. The structure and the use of the yurt have not changed over the centuries, making it a nomadic civilization's masterpiece. It has not lost its relevance ...
2021
, ,
Airfoil stall plays a central role in the design of safe and efficient lifting surfaces. We typically distinguish between static and dynamic stall based on the unsteady rate of change of an airfoil’s angle of attack. Despite the somewhat misleading denotat ...