A laboratory information management system (LIMS), sometimes referred to as a laboratory information system (LIS) or laboratory management system (LMS), is a software-based solution with features that support a modern laboratory's operations. Key features include—but are not limited to—workflow and data tracking support, flexible architecture, and data exchange interfaces, which fully "support its use in regulated environments". The features and uses of a LIMS have evolved over the years from simple sample tracking to an enterprise resource planning tool that manages multiple aspects of laboratory informatics.
There is no useful definition of the term "LIMS" as it is used to encompass a number of different laboratory informatics components. The spread and depth of these components is highly dependent on the LIMS implementation itself. All LIMSs have a workflow component and some summary data management facilities but beyond that there are significant differences in functionality.
Historically the LIMS, LIS, and process development execution system (PDES) have all performed similar functions. The term "LIMS" has tended to refer to informatics systems targeted for environmental, research, or commercial analysis such as pharmaceutical or petrochemical work. "LIS" has tended to refer to laboratory informatics systems in the forensics and clinical markets, which often required special case management tools. "PDES" has generally applied to a wider scope, including, for example, virtual manufacturing techniques, while not necessarily integrating with laboratory equipment.
In recent times LIMS functionality has spread even further beyond its original purpose of sample management. Assay data management, data mining, data analysis, and electronic laboratory notebook (ELN) integration have been added to many LIMS, enabling the realization of translational medicine completely within a single software solution. Additionally, the distinction between LIMS and LIS has blurred, as many LIMS now also fully support comprehensive case-centric clinical data.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction aux concepts de base de cheminformatique et
aux principaux outils utilisés. Applications potentielles de ces outils
en recherche pour la gestion de l'information.
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
A medical laboratory or clinical laboratory is a laboratory where tests are conducted out on clinical specimens to obtain information about the health of a patient to aid in diagnosis, treatment, and prevention of disease. Clinical medical laboratories are an example of applied science, as opposed to research laboratories that focus on basic science, such as found in some academic institutions. Medical laboratories vary in size and complexity and so offer a variety of testing services.
This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...
EPFL2024
This study aims to explore the possibility of estimating a multitude of kinematic and dynamic quantities using subject-specific musculoskeletal models in real-time. The framework was designed to operate with marker-based and inertial measurement units enab ...
There is a need for a tool that facilitates safety decision-making in the academic environment. As this environment is very different from that of industry or other public sectors, there is no information available on the factors that influence the decisio ...