Summary
Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period (niobium and molybdenum) and three of the sixth period (tantalum, tungsten, and rhenium). They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures. Most definitions of the term 'refractory metals' list the extraordinarily high melting point as a key requirement for inclusion. By one definition, a melting point above is necessary to qualify. The five elements niobium, molybdenum, tantalum, tungsten and rhenium are included in all definitions, while the wider definition, including all elements with a melting point above , includes nine additional elements: titanium, vanadium, chromium, zirconium, hafnium, ruthenium, rhodium, osmium and iridium. The artificial elements, being radioactive, are never considered to be part of the refractory metals, although technetium has a melting point of 2430 K or 2157 °C and rutherfordium is predicted to have melting point of 2400 K or 2100 °C. Refractory metals have high melting points, with tungsten and rhenium the highest of all elements, and the other's melting points only exceeded by osmium and iridium, and the sublimation of carbon. These high melting points define most of their applications. All the metals are body-centered cubic except rhenium which is hexagonal close-packed.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (38)