François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Marilyne AndersenMarilyne Andersen is a Full Professor of Sustainable Construction Technologies and heads the Laboratory of Integrated Performance in Design (LIPID) that she launched in the Fall of 2010. She was Dean of the School of Architecture, Civil and Environmental Engineering (ENAC) at EPFL from 2013 to 2018 and is the Academic Director of the Smart Living Lab in Fribourg. She also co-leads the Student Kreativity and Innovation Laboratory (SKIL) at ENAC. Before joining EPFL as a faculty, she was an Assistant Professor then Associate Professor tenure-track in the Building Technology Group of the MIT School of Architecture and Planning and the Head of the MIT Daylighting Lab that she founded in 2004. She has also been Invited Professor at the Singapore University of Technology and Design in 2019. Marilyne Andersen owns a Master of Science in Physics and specialized in daylighting through her PhD in Building Physics at EPFL in the Solar Energy and Building Physics Laboratory (LESO) and as a Visiting Scholar in the Building Technologies Department of the Lawrence Berkeley National Laboratory in California. Her research lies at the interface between science, engineering and architectural design with a dedicated emphasis on the impact of daylight on building occupants. Focused on questions of comfort, perception and health and their implications on energy considerations, these research efforts aim towards a deeper integration of the design process with daylighting performance and indoor comfort, by reaching out to various fields of science, from chronobiology and neuroscience to psychophysics and computer graphics. She is leveraging this research in practice through OCULIGHT dynamics, a startup company she co-founded, which offers specialized consulting services on daylight performance and its psycho-physiological effects on building occupants. She is the author of more than 200 papers published in peer-reviewed journals and international conferences and the recipient of several grants and awards including: the Daylight Award for Research (2016), eleven publication awards and distinctions (2009, 2011, 2012, 2015, 2018, 2019) including the Taylor Technical Talent Award 2009 granted by the Illuminating Engineering Society, the 3M Non-Tenured Faculty Grant (2009), the Mitsui Career Development Professorship at MIT (2008) and the EPFL prize of the Chorafas Foundation awarded to her PhD thesis in Sustainability (2005). Her research or teaching has been supported by professional, institutional and industrial organizations such as: the Swiss and the U.S. National Science Foundations, the Velux Foundation, the European Horizon 2020 program, the Boston Society of Architects, the MIT Energy Initiative and InnoSuisse. She was the leader and faculty advisor of the Swiss Team and its NeighborHub project, who won the U.S. Solar Decathlon 2017 competition with 8 podiums out of 10 contests. She is a member of the Board of the LafargeHolcim Foundation for Sustainable Construction and Head of its Academic Committee. She is also a member of the Editorial Board of the journal Building and Environment by Elsevier, and of the journals LEUKOS (of the Illuminating Engineering Society) and Buildings and Cities, by Taylor and Francis. She is expert to the Innovation Council of InnoSuisse and Founding member as well as Board member of the Foundation Culture du Bâti (CUB), and is also founding member of the Daylight Academy and an active member of several committees of the Illuminating Engineering Society (IES) and International Commission on Illumination (CIE).
David Atienza AlonsoDavid Atienza Alonso is an associate professor of EE and director of the Embedded Systems Laboratory (ESL) at EPFL, Switzerland. He received his MSc and PhD degrees in computer science and engineering from UCM, Spain, and IMEC, Belgium, in 2001 and 2005, respectively. His research interests include system-level design methodologies for multi-processor system-on-chip (MPSoC) servers and edge AI architectures. Dr. Atienza has co-authored more than 350 papers, one book, and 12 patents in these previous areas. He has also received several recognitions and award, among them, the ICCAD 10-Year Retrospective Most Influential Paper Award in 2020, Design Automation Conference (DAC) Under-40 Innovators Award in 2018, the IEEE TCCPS Mid-Career Award in 2018, an ERC Consolidator Grant in 2016, the IEEE CEDA Early Career Award in 2013, the ACM SIGDA Outstanding New Faculty Award in 2012, and a Faculty Award from Sun Labs at Oracle in 2011. He has also earned two best paper awards at the VLSI-SoC 2009 and CST-HPCS 2012 conference, and five best paper award nominations at the DAC 2013, DATE 2013, WEHA-HPCS 2010, ICCAD 2006, and DAC 2004 conferences. He serves or has served as associate editor of IEEE Trans. on Computers (TC), IEEE Design & Test of Computers (D&T), IEEE Trans. on CAD (T-CAD), IEEE Transactions on Sustainable Computing (T-SUSC), and Elsevier Integration. He was the Technical Program Chair of DATE 2015 and General Chair of DATE 2017. He served as President of IEEE CEDA in the period 2018-2019 and was GOLD member of the Board of Governors of IEEE CASS from 2010 to 2012. He is a Distinguished Member of ACM and an IEEE Fellow.
Viktor KuncakViktor Kunčak joined EPFL in 2007, after receiving a PhD degree from MIT. Since then has been leading the Laboratory for Automated Reasoning and Analysis and supervised at least 12 completed PhD theses. His works on languages, algorithms and systems for verification and automated reasoning. He served as an initiator and one of the coordinators of a European network (COST action) in the area of automated reasoning, verification, and synthesis. In 2012 he received a 5-year single-investigator European Research Council (ERC) grant of 1.5M EUR. His invited talks include those at Lambda Days, Scala Days, NFM, LOPSTR, SYNT, ICALP, CSL, RV, VMCAI, and SMT. A paper on test generation he co-authored received an ACM SIGSOFT distinguished paper award at ICSE. A PLDI paper he co-authored was published in the Communications of the ACM as a Research Highlight article. His Google Scholar profile reports an over-approximate H-index of 38. He was an associate editor of ACM Transactions on Programming Languages and Systems (TOPLAS) and served as a co-chair of conferences on Computer-Aided Verification (CAV), Formal Methods in Computer Aided Design (FMCAD), Workshop on Synthesis (SYNT), and Verification, Model Checking, and Abstract Interpretation (VMCAI). At EPFL he teaches courses on functional and parallel programming, compilers, and verification. He has co-taught the MOOC "Parallel Programming" that was visited by over 100'000 learners and completed by thousands of students from all over the world.
Claudia Rebeca Binder SignerClaudia R. Binder, a Swiss, Canadian and Colombian citizen, was born in Montreal and spent most of her childhood in Switzerland and Colombia. She studied at ETH Zurich from 1985 to 1996, earning a degree in biochemistry and then a PhD in environmental sciences. After conducting her post-doctoral research at the University of Maryland in the US from 1996 to 1998, she returned to Switzerland and took a position as a senior research scientist at ETH Zurich, studying the interaction between human and environmental systems at the Institute for Natural and Social Science Interface. In 2006, Binder joined the University of Zurich as an assistant professor in the Department of Geography, and in 2009 moved to the University of Graz in Austria where she served as a full professor of systems science. In 2011, she took a position at the University of Munich’s Department of Geography as a full professor of human-environment relations.
Binder joined EPFL in March 2016 and set up the Laboratory for Human-Environment Relations in Urban Systems (HERUS) at ENAC; she also holds the La Mobilière Chair on Urban Ecology and Sustainable Living.
Her research involves analyzing, modelling and assessing the transition of urban systems towards sustainability. She looks in particular at how we can better understand the dynamics of urban metabolism, what characterizes a sustainable city, and what drives and hinders transformation processes. She does so by combining knowledge from social, natural and data science. Her research focuses on food, energy, and sustainable living and transport in urban systems.
In Switzerland, Binder was appointed to the Research Council, Programs Division of the Swiss National Science Foundation (SNSF) in 2016 and serves on the Steering Committee of the SNSF’s National Research Program 71, “Managing Energy Consumption” and the Swiss Competence Centers for Energy Research (SCCER). She is also a member of the Steering Board on Sustainability Research for the Swiss Academies of Arts and Sciences. In 2019, she was elected as a member of the University Council of the University of Munich (LMU).
At EPFL, Binder is the academic director of Design Together, a cross-disciplinary teaching initiative. She was appointed to the management team of the Energy Center in 2018 and as head of the working group on EPFL’s energy and sustainability strategy in 2019.
Daniel FavratDaniel Favrat got his Master degree in Mechanical Engineering from EPFL in 1972 and his PhD also from EPFL. He then spent 12 years in industrial research laboratories in Canada (Esso Canada) and Switzerland (CERAC: Centre Européen de Recherche Atlas Copco). From 1988 to 2013, he was full professor and director of the Industrial Energy Systems Laboratory (LENI) at EPFL. During that period he was successively director of the Institute of Energy and director of the Institute of Mechanical Engineering. From August 2013 he works at EPFL Energy Center first as director ad interim and now as director technologies.
His research fields include systemic analyses accounting for energy, environment and economics (so-called environomic optimisation) and advanced conversion systems for a more rational use of energy (heat pumps &ORC, engines, fuel cells, power plants, etc).
He is a member of the Swiss Academy of Engineering Sciences and of the National Academy of Technology in France. He has also an active participation in the World Federation of Engineering Organizations (WFEO) as a member of the executive committee and vice-chair of the energy committee. He is associate editor of the journal "Energy" and of International Journal of thermodynamics. He is the author of several books on thermodynamics and energy systems analysis. He is also affiliate professor at the Royal Institute of Technology (KTH) in Stockholm.
Rémy GlardonREMY GLARDON is Professor at the Swiss Federal Institute of Technology at Lausanne. He is the founder and director of the Laboratory for Production Management and Processes. He owns a Master in Mechanical Engineering and a PhD in Materials Science from the Swiss Federal Institute of Technology at Lausanne. After his graduate study at EPFL, he spent several years as a postdoc at UC-Berkeley where he published several research papers on the mechanical behavior and wear of materials. He then moved to industry and occupied several management positions in production, logistics and operations management. Before joining EPFL in Sept. 1995 to found the Laboratory for Production Management & Processes, he was Operations Manager and member of the board of an international high tech. company. His main research interests are currently related to the design, configuration and strategic, tactical & operational management of value adding networks. His research activities concern more specifically, the integration of human aspects in the modeling & simulation of these complex systems. Rémy Glardon has initiated and completed several research and consulting projects with private companies in these areas, aiming at improving the cost/performance ratio in operations management. He is also co-founder of two start-up consulting enterprises in the field of supply chain and operations management.
François AvellanProf. François Avellan, director of the EPFL Laboratory for Hydraulic Machines, graduated in Hydraulic Engineering from Ecole nationale supérieure d'hydraulique, Institut national polytechnique de Grenoble, France, in 1977 and, in 1980, got his doctoral degree in engineering from University of Aix-Marseille II, France. Research associate at EPFL in 1980, he is director of the EPFL Laboratory for Hydraulic Machines since 1994 and, in 2003, was appointed Ordinary Professor in Hydraulic Machinery. Supervising 37 EPFL doctoral theses, he was distinguished by SHF, Société hydrotechnique de France, awarding him the "Grand Prix 2010 de l'hydrotechnique". His main research domains of interests are hydrodynamics of turbine, pump and pump-turbines including cavitation, hydro-acoustics, design, performance and operation assessments of hydraulic machines. Prof. Avellan was Chairman of the IAHR Section on Hydraulic Machinery and Systems from 2002 to 2012. He has conducted successfully several Swiss and international collaborative research projects, involving key hydropower operators and suppliers, such as:
-
Coordination for the FP7 European project n° 608532 "HYPERBOLE: HYdropower plants PERformance and flexiBle Operation towards Lean integration of new renewable Energies" (2013-2017);
-
Deputy Head of the Swiss Competence Center for Energy Research – Supply of Electricity (SCCER-SoE) to carry out innovative and sustainable research in the areas of geo-energy and hydropower for phase I (2013-2016) and Phase II (2017, 2010) to be approved.
-
EUREKA European research projects: N° 4150 and N° 3246, "HYDRODYNA, Harnessing the dynamic behavior of pump-turbines", (2003-2011), N° 1605, "FLINDT, Flow Investigation in Draft Tubes", http://flindt.epfl.ch/, (1997-2002). N° 2418, "SCAPIN, Stability of Operation of Francis turbines, prediction and modeling";
-
Swiss KTI/CTI research projects with GE Renewable Energy (anc. ALSTOM Hydro), Birr, ANDRITZ Hydro, Kriens, FMV, Sion, Groupe E, Granges-Paccot, Power Vision engineering, Ecublens and SULZER Pumps, Winterthur.
-
ETH Domain, HYDRONET Project for the Competence Center Energy and Mobility, PSI Villingen.
Furthermore, he is involved in scientific expertise and independent contractual experimental validations of turbines and pump turbines performances for the main hydropower plants in the world. In recognition for his work as Convenor of the TC4 working group of experts in editing the IEC 60193 standard he received the "IEC 1906 Award" from the International Electrotechnical Commission.