CMOS amplifiers (complementary metal–oxide–semiconductor amplifiers) are ubiquitous analog circuits used in computers, audio systems, smartphones, cameras, telecommunication systems, biomedical circuits, and many other systems. Their performance impacts the overall specifications of the systems. They take their name from the use of MOSFETs (metal–oxide–semiconductor field-effect transistors) as opposite to bipolar junction transistors (BJTs). MOSFETs are simpler to fabricate and therefore less expensive than BJT amplifiers, still providing a sufficiently high transconductance to allow the design of very high performance circuits. In high performance CMOS (complementary metal–oxide–semiconductor) amplifier circuits, transistors are not only used to amplify the signal but are also used as active loads to achieve higher gain and output swing in comparison with resistive loads. CMOS technology was introduced primarily for digital circuit design. In the last few decades, to improve speed, power consumption, required area, and other aspects of digital integrated circuits (ICs), the feature size of MOSFET transistors has shrunk (minimum channel length of transistors reduces in newer CMOS technologies). This phenomenon predicted by Gordon Moore in 1975, which is called Moore’s law, and states that in about each 2 years, the number of transistors doubles for the same silicon area of ICs. Progress in memory circuits design is an interesting example to see how process advancement have affected the required size and their performance in the last decades. In 1956, a 5 MB Hard Disk Drive (HDD) weighed over a ton, while these days having 50000 times more capacity with a weight of several tens of grams is very common. While digital ICs have benefited from the feature size shrinking, analog CMOS amplifiers have not gained corresponding advantages due to the intrinsic limitations of an analog design—such as the intrinsic gain reduction of short channel transistors, which affects the overall amplifier gain.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.