Linear logicLinear logic is a substructural logic proposed by Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also been studied for its own sake, more broadly, ideas from linear logic have been influential in fields such as programming languages, game semantics, and quantum physics (because linear logic can be seen as the logic of quantum information theory), as well as linguistics, particularly because of its emphasis on resource-boundedness, duality, and interaction.
Geometry of interactionThe Geometry of Interaction (GoI) was introduced by Jean-Yves Girard shortly after his work on linear logic. In linear logic, proofs can be seen as various kinds of networks as opposed to the flat tree structures of sequent calculus. To distinguish the real proof nets from all the possible networks, Girard devised a criterion involving trips in the network. Trips can in fact be seen as some kind of operator acting on the proof.
LudicsIn proof theory, ludics is an analysis of the principles governing inference rules of mathematical logic. Key features of ludics include notion of compound connectives, using a technique known as focusing or focalisation (invented by the computer scientist Jean-Marc Andreoli), and its use of locations or loci over a base instead of propositions. More precisely, ludics tries to retrieve known logical connectives and proof behaviours by following the paradigm of interactive computation, similarly to what is done in game semantics to which it is closely related.
Proof netIn proof theory, proof nets are a geometrical method of representing proofs that eliminates two forms of bureaucracy that differentiate proofs: (A) irrelevant syntactical features of regular proof calculi, and (B) the order of rules applied in a derivation. In this way, the formal properties of proof identity correspond more closely to the intuitively desirable properties. Proof nets were introduced by Jean-Yves Girard. This distinguishes proof nets from regular proof calculi such as the natural deduction calculus and the sequent calculus, where these phenomena are present.
Game semanticsGame semantics (dialogische Logik, translated as dialogical logic) is an approach to formal semantics that grounds the concepts of truth or validity on game-theoretic concepts, such as the existence of a winning strategy for a player, somewhat resembling Socratic dialogues or medieval theory of Obligationes. In the late 1950s Paul Lorenzen was the first to introduce a game semantics for logic, and it was further developed by Kuno Lorenz.
Proof theoryProof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.