Concept

Tideman alternative method

Tideman's Alternative Methods, including Alternative Smith and Alternative Schwartz, are two electoral systems developed by Nicolaus Tideman which select a single winner using votes that express preferences. These methods can also create a sorted list of winners. These methods are Smith- and Schwartz-efficient, respectively, and thus are Condorcet methods. They operate by using instant-runoff voting for cycle resolution. Tideman's Alternative procedure is as follows: Identify the Smith or Schwartz set. If the set consists of one candidate, elect that candidate. Eliminate all candidates outside the set and redistribute ballots. Eliminate the plurality loser. Repeat the procedure. To create a sorted list of preferred candidates, select a winner, remove that winner from the list of candidates, and repeat. Tideman's Alternative Methods are easier to understand than other methods, such as Ranked Pairs and Schulze, owing to the simplicity of explaining both the Smith set (the smallest set of all candidates who each defeat every non-Smith candidate) and Instant run-off voting (eliminating the candidate with the fewest votes). This increases the likelihood of voter acceptance. This method strongly resists both tactical voting and tactical nomination, reducing the amount of political manipulation possible or favorable in large elections. They inherit this resistance from instant run-off voting, as both methods resolve a Condorcet winner from the Smith set by eliminating non-Smith (or non-Schwartz) candidates and performing instant run-off voting on the result. Although IRV itself faces criticism for theoretical and historical failures, all Smith- and Schwartz-efficient voting methods attempt to resolve a candidate from these respective sets. Unlike IRV, these methods invariably elect a Condorcet winner; when there is none, they elect different winners based on arbitrary criteria. Ranked Pairs elects the winner with the strongest overall ranking, while the Schulze method attempts to elect a winner without the worst pairwise loss.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Election Methods: Desirable Properties
Discusses election methods' desirable properties, multi-winner methods, district representation, gerrymandering, and the tyranny of the majority.
Show more
Related concepts (6)
Schwartz set
In voting systems, the Schwartz set is the union of all Schwartz set components. A Schwartz set component is any non-empty set S of candidates such that Every candidate inside the set S is pairwise unbeaten by every candidate outside S; and No non-empty proper subset of S fulfills the first property. A set of candidates that meets the first requirement is also known as an undominated set. The Schwartz set provides one standard of optimal choice for an election outcome.
Condorcet paradox
The Condorcet paradox (also known as the voting paradox or the paradox of voting) in social choice theory is a situation noted by the Marquis de Condorcet in the late 18th century, in which collective preferences can be cyclic, even if the preferences of individual voters are not cyclic. This is paradoxical, because it means that majority wishes can be in conflict with each other: Suppose majorities prefer, for example, candidate A over B, B over C, and yet C over A.
Smith set
In voting systems, the Smith set, named after John H. Smith, but also known as the top cycle, or as Generalized Top-Choice Assumption (GETCHA), is the smallest non-empty set of candidates in a particular election such that each member defeats every candidate outside the set in a pairwise election. The Smith set provides one standard of optimal choice for an election outcome. Voting systems that always elect a candidate from the Smith set pass the Smith criterion and are said to be 'Smith-efficient' or to satisfy the Smith criterion.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.