In population genetics, directional selection, is a mode of negative natural selection in which an extreme phenotype is favored over other phenotypes, causing the allele frequency to shift over time in the direction of that phenotype. Under directional selection, the advantageous allele increases as a consequence of differences in survival and reproduction among different phenotypes. The increases are independent of the dominance of the allele, and even if the allele is recessive, it will eventually become fixed.
Directional selection was first described by Charles Darwin in the book On the Origin of Species as a form of natural selection. Other types of natural selection include stabilizing and disruptive selection. Each type of selection contains the same principles, but is slightly different. Disruptive selection favors both extreme phenotypes, different from one extreme in directional selection. Stabilizing selection favors the middle phenotype, causing the decline in variation in a population over time.
Directional selection occurs most often under environmental changes and when populations migrate to new areas with different environmental pressures. Directional selection allows for fast changes in allele frequency, and plays a major role in speciation. Analysis on QTL effects has been used to examine the impact of directional selection in phenotypic diversification. This analysis showed that the genetic loci correlating to directional selection was higher than expected; meaning directional selection is a primary cause of phenotypic diversification, which leads to speciation.
There are different statistical tests that can be run to test for the presence of directional selection in a population. A few of the tests include the QTL sign test, Ka/Ks ratio test and the relative rate test. The QTL sign test compares the number of antagonistic QTL to a neutral model, and allows for testing of directional selection against genetic drift. The Ka/Ks ratio test compares the number of non-synonymous to synonymous substitutions, and a ratio that is greater than 1 indicates directional selection.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Assortative mating (also referred to as positive assortative mating or homogamy) is a mating pattern and a form of sexual selection in which individuals with similar phenotypes or genotypes mate with one another more frequently than would be expected under a random mating pattern. A majority of the phenotypes that are subject to assortative mating are body size, visual signals (e.g. color, pattern), and sexually selected traits such as crest size. The opposite of assortative is disassortative mating.
In biology, the word gene (from γένος, génos; meaning generation or birth or gender) can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function.
Balancing selection refers to a number of selective processes by which multiple alleles (different versions of a gene) are actively maintained in the gene pool of a population at frequencies larger than expected from genetic drift alone. Balancing selection is rare compared to purifying selection. It can occur by various mechanisms, in particular, when the heterozygotes for the alleles under consideration have a higher fitness than the homozygote. In this way genetic polymorphism is conserved.
At the same time, several different tutorials on available data and data tools, such as those from the Allen Institute for Brain Science, provide you with in-depth knowledge on brain atlases, gene exp
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
Patterns in nature arise from processes interacting across a continuum of spatial scales, where new relationships emerge at each level of investigation. These patterns are nested features encompassing fine-scale local patterns, such as topography and geolo ...
1ère année: bases nécessaires à la représentation informatique 2D (3D).
Passage d'un à plusieurs logiciels: compétence de choisir les outils adéquats en 2D et en 3D.
Mise en relation des outils de CAO
Comment travailler ensemble dans une start-up, un bureau d'étude ou une équipe restreinte ? Nous aborderons la question de l'organisation et des interactions au travail à travers des études de cas que
Background: Reproductive isolation can result from adaptive processes (e.g., ecological speciation and mutation-order speciation) or stochastic processes such as "system drift" model. Ecological speciation predicts barriers to gene flow between populations ...
The volume collects the material produced for the exhibition 'The Sky in the Room' and a selection of scientific texts on the question of analogue continuity in digital transition. The contributions will be focused on verifying the operative method in teac ...