In mathematics, an expression is in closed form if it is formed with constants, variables and a finite set of basic functions connected by arithmetic operations (+, −, ×, ÷, and integer powers) and function composition. Commonly, the allowed functions are nth root, exponential function, logarithm, and trigonometric functions . However, the set of basic functions depends on the context. The closed-form problem arises when new ways are introduced for specifying mathematical objects, such as limits, series and integrals: given an object specified with such tools, a natural problem is to find, if possible, a closed-form expression of this object, that is, an expression of this object in terms of previous ways of specifying it. The quadratic formula is a closed form of the solutions of the general quadratic equation More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed basic functions are reduced to only nth-roots. In fact, field theory allows showing that if a solution of a polynomial equation has a closed form involving exponentials, logarithms or trigonometric functions, then it has also a closed form that does not involve these functions. There are expressions in radicals for all solutions of cubic equations (degree 3) and quartic equations (degree 4). However, they are rarely written explicitly because they are too complicated for being useful. In higher degrees, Abel–Ruffini theorem states that there are equations whose solutions cannot be expressed in radicals, and, thus, have no closed forms. The simplest example is the equation Galois theory provides an algorithmic method for deciding whether a particular polynomial equation can be solved in radicals. Symbolic integration consists essentially of the search of closed forms for antiderivatives of functions that are specified by closed-form expressions. In this context, the basic functions used for defining closed forms are commonly logarithms, exponential function and polynomial roots.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (29)
MATH-381: Mathematical logic
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
ChE-330: Fluid mechanics and transport phenomena
The concept of Shell balances, the Navier-Stokes equations and generalized differential balances equations for heat and mass transport are derived. These relations are applied to model systems. Integr
Show more
Related publications (169)
Related concepts (20)
Differential equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.
Error function
In mathematics, the error function (also called the Gauss error function), often denoted by erf, is a complex function of a complex variable defined as: Some authors define without the factor of . This nonelementary integral is a sigmoid function that occurs often in probability, statistics, and partial differential equations. In many of these applications, the function argument is a real number. If the function argument is real, then the function value is also real.
Constant (mathematics)
In mathematics, the word constant conveys multiple meanings. As an adjective, it refers to non-variance (i.e. unchanging with respect to some other value); as a noun, it has two different meanings: A fixed and well-defined number or other non-changing mathematical object. The terms mathematical constant or physical constant are sometimes used to distinguish this meaning. A function whose value remains unchanged (i.e., a constant function). Such a constant is commonly represented by a variable which does not depend on the main variable(s) in question.
Show more
Related MOOCs (14)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.