Jean-Yves Le BoudecJean-Yves Le Boudec is full professor at EPFL and fellow of the IEEE. He graduated from Ecole Normale Superieure de Saint-Cloud, Paris, where he obtained the Agregation in Mathematics in 1980 (rank 4) and received his doctorate in 1984 from the University of Rennes, France. From 1984 to 1987 he was with INSA/IRISA, Rennes. In 1987 he joined Bell Northern Research, Ottawa, Canada, as a member of scientific staff in the Network and Product Traffic Design Department. In 1988, he joined the IBM Zurich Research Laboratory where he was manager of the Customer Premises Network Department. In 1994 he joined EPFL as associate professor. His interests are in the performance and architecture of communication systems. In 1984, he developed analytical models of multiprocessor, multiple bus computers. In 1990 he invented the concept called "MAC emulation" which later became the ATM forum LAN emulation project, and developed the first ATM control point based on OSPF. He also launched public domain software for the interworking of ATM and TCP/IP under Linux. He proposed in 1998 the first solution to the failure propagation that arises from common infrastructures in the Internet. He contributed to network calculus, a recent set of developments that forms a foundation to many traffic control concepts in the internet. He earned the Infocom 2005 Best Paper award, with Milan Vojnovic, for elucidating the perfect simulation and stationarity of mobility models, the 2008 IEEE Communications Society William R. Bennett Prize in the Field of Communications Networking, with Bozidar Radunovic, for the analysis of max-min fairness and the 2009 ACM Sigmetrics Best Paper Award, with Augustin Chaintreau and Nikodin Ristanovic, for the mean field analysis of the age of information in gossiping protocols. He is or has been on the program committee or editorial board of many conferences and journals, including Sigcomm, Sigmetrics, Infocom, Performance Evaluation and ACM/IEEE Transactions on Networking. He co-authored the book "Network Calculus" (2001) with Patrick Thiran and is the author of the book "Performance Evaluation of Computer and Communication Systems" (2010).
Farhad Rachidi-HaeriFarhad Rachidi (IEEE Fellow, EMP Fellow, Electromagnetics Academy Fellow) was born in Geneva in 1962. He received the M.S. degree in electrical engineering and the Ph.D. degree from the Swiss Federal Institute of Technology, Lausanne, in 1986 and 1991 respectively.
He worked at the Power Systems Laboratory of the same institute until 1996 and had several short stays at the University of Florida and the NASA Kennedy Space Center. In 1997, he joined the Lightning Research Laboratory of the University of Toronto in Canada and from April 1998 until September 1999, he was with Montena EMC in Switzerland. He is currently a titular professor and the head of the EMC Laboratory at the Swiss Federal Institute of Technology, Lausanne, Switzerland.
His research interests concern electromagnetic compatibility, lightning electromagnetics and electromagnetic field interactions with transmission lines.
Dr. Rachidi is currently a member of the Advisory Board of the IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY and the President of the Swiss National Committee of the International Union of Radio Science.
He has received numerous awards including the 2005 IEEE EMC Technical Achievement Award, the 2005 CIGRE Technical Committee Award, the 2006 Blondel Medal from the French Association of Electrical Engineering, Electronics, Information Technology and Communication (SEE), the 2016 Berger Award from the International Conference on Lightning Protection, the 2016 Best Paper Award of the IEEE Transactions on EMC, and the 2017 Motohisa Kanda Award for the most cited paper of the IEEE Transactions on EMC (2012-2016).
In 2014, he was conferred the title of Honorary Professor of the Xi’an Jiaotong University in China.
He served as the Vice-Chair of the European COST Action on the Physics of Lightning Flash and its Effects from 2005 to 2009, the Chairman of the 2008 European Electromagnetics International Symposium, the President of the International Conference on Lightning Protection from 2008 to 2014, the Editor-in-Chief of the Open Atmospheric Science Journal (2010-2012) and the Editor-in-Chief of the IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY from 2013 to 2015. He is a Fellow of the IEEE and of the SUMMA Foundation, and a member of the Swiss Academy of Sciences.
He is the author or coauthor of over 200 scientific papers published in peer-reviewed journals and over 400 papers presented at international conferences.
Joaquim Loizu CisquellaJoaquim Loizu graduated in Physics at the École Polytechnique Fédérale de Lausanne, carrying out his Master thesis project at the Center for Bio-Inspired Technology, Imperial College London, on the theoretical and numerical study of the biophysics of light-sensitive neurons. In 2009, he started his PhD studies with Prof. Paolo Ricci at the Swiss Plasma Center, the major plasma and fusion laboratory in Switzerland. His thesis focused on the theory of plasma-wall interactions and their effect on the mean flows and turbulence in magnetized plasmas. He obtained his PhD in December 2013. In 2014, he joined the Max-Planck-Princeton Center for plasma research as a Postdoctoral Research Fellow, spending one year at the Princeton Plasma Physics Laboratory and one year at the Max-Planck-Institute for Plasma Physics in Greifswald, Germany. During this time, he worked on three-dimensional magnetohydrodynamics, studying the formation of singular currents and magnetic islands at rational surfaces. In 2016, he obtained a two-years Eurofusion Postdoctoral Fellowship to carry out research at the Max-Planck-Institute for Plasma Physics in Greifswald, Germany. During this time, he focused on the computation of 3D MHD equilibria in stellarators, including the possibility of magnetic islands and magnetic field-line chaos. In 2018, he joined the Swiss Plasma Center as a Scientist and Lecturer. He is also one of the leaders of the Simons Collaboration on Hidden Symmetries and Fusion Energy. His current research interests include MHD equilibrium and stability, magnetic reconnection, self-organization, non-neutral plasmas, plasma sheaths, and plasma transport in chaotic magnetic fields.
Luc ThévenazLuc Thévenaz received in 1982 the M.Sc. degree in astrophysics from the Observatory of Geneva, Switzerland, and in 1988 the Ph.D. degree in physics from the University of Geneva, Switzerland. He developed at this moment his field of expertise, i.e. fibre optics. In 1988 he joined the Swiss Federal Institute of Technology of Lausanne (EPFL) where he currently leads a research group involved in photonics, namely fibre optics and optical sensing. Research topics include Brillouin-scattering fibre sensors, nonlinear fibre optics, slow & fast light and laser spectroscopy in gases. His main achievements are: - the invention of a novel configuration for distributed Brillouin fibre sensing based on a single laser source, resulting in a high intrinsic stability making for the first time field measurements possible, - the development of a photoacoustic gas trace sensor using a near infra-red semiconductor laser, detecting a gas concentration at the ppb level, - the first experimental demonstration of optically-controlled slow & fast light in optical fibres, realized at ambient temperature and operating at any wavelength since based on stimulated Brillouin scattering. The first negative group velocity of light was also realized in optical fibres using this approach. In 1991, he visited the PUC University in Rio de Janeiro, Brazil where he worked on the generation of picosecond pulses in semiconductor lasers. In 1991-1992 he stayed at Stanford University, USA, where he participated in the development of a Brillouin laser gyroscope. He joined in 1998 the company Orbisphere Laboratories SA in Neuchâtel, Switzerland, as Expert Scientist to develop gas trace sensors based on photoacoustic laser spectroscopy. In 1998 and 1999 he visited the Korea Advanced Institute of Science and Technology (KAIST) in Daejon, South Korea, where he worked on fibre laser current sensors. In 2000 he co-founded the spin-off company Omnisens that is developing and commercializing advanced photonic instrumentation. In 2007 he visited Tel Aviv University where he studied the all-optical control of polarization in optical fibres. During winter 2010 he stayed at the University of Sydney where he studied applications of stimulated Brillouin scattering in chalcogenide waveguides. In 2014 he stayed at the Polytechnic University of Valencia where he worked on microwave applications of stimulated Brillouin scattering. He was member of the Consortium in the FP7 European Project GOSPEL "Governing the speed of light", was Chairman of the European COST Action 299 "FIDES: Optical Fibres for New Challenges Facing the Information Society" and is author or co-author of some 480 publications and 12 patents. He is now Coordinator of the H2020 Marie Skłodowska-Curie Innovative Training Networks FINESSE (FIbre NErve Systems for Sensing). He is co-Executive Editor-in-Chief of the journal "Nature Light: Science & Applications" and is Member of the Editorial Board (Associate Editor) for the journal "APL Photonics" & "Laser & Photonics Reviews". He is also Fellow of both the IEEE and the Optical Society (OSA).
Jan Sickmann HesthavenProf. Hesthaven received an M.Sc. in computational physics from the Technical University of Denmark (DTU) in August 1991. During the studies, the last 6 months of 1989 was spend at JET, the european fusion laboratory in Culham, UK. Following graduation, he was awarded a 3 year fellowship to begin work towards a Ph.D. at Riso National Laboratory in the Department of Optics and Fluid Dynamics. During the 3 years of study, the academic year of 1993-1994 was spend in the Division of Applied Mathematics at Brown University and three 3 months during the summer of 1994 in Department of Mathematics and Statistics at University of New Mexico. In August 1995, he recieved a Ph.D. in Numerical Analysis from the Institute of Mathematical Modelling (DTU). Following graduation in August 1995, he was awarded an NSF Postdoctoral Fellowship in Advanced Scientific Computing and was approinted Visiting Assistant Professor in the Division of Applied Mathematics at Brown University. In December of 1996, he was appointed consultant to the Institute of Computer Applications in Science and Engineering(ICASE) at NASA Langley Research Center (NASA LaRC). As of July 1999, he was appointed Assistant Professor of Applied Mathematics, in September 2000 he was awarded an Alfred P. Sloan Fellowship, as of July 2001 he was awarded a Manning Assistant Professorship, and in March 2002, he was awarded an NSF Career Award. In January 2003, he was promoted to Associate Professor of Applied Mathematics with tenure and in May 2004 he was awarded Philip J. Bray Award for Excellence in Teaching in the Sciences (the highest award given for teaching excellence in all sciences at Brown University). He was promoted to Professor of Applied Mathematics as of July 2005. From October 2006 to June 2013, he was the Founding Director of the Center for Computation and Visualization (CCV) at Brown University. As of October 2007, he holds the (honorary) title of Professor (Adjunct) at the Technical University of Denmark. In November 2009, he successfully defended his dr.techn thesis at the Technical University of Denmark and was rewarded the degree of Doctor Technices -- the highest academic distinction awarded based on ... substantial and lasting contributions that has helped to move the research area forward and penetrated into applications. As grant Co-PI he served from Aug 2010 to June 2013 as Deputy Director of the Institute of Computational and Experimental Research in Mathematics (ICERM), the newest NSF Mathematical Sciences Research Institute. After having spend his entire academic career at Brown University, Prof Hesthaven decided to pursue new challenges and joined the Mathematics Institute of Computational Science and Engineering (MATHICSE) at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland in July 2013. In March 2014 he was elected SIAM Fellow for contributions to high-order methods for partial differential equations.