Summary
Liquid hydrogen (H2(l)) is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecular H2 form. To exist as a liquid, H2 must be cooled below its critical point of 33 K. However, for it to be in a fully liquid state at atmospheric pressure, H2 needs to be cooled to . A common method of obtaining liquid hydrogen involves a compressor resembling a jet engine in both appearance and principle. Liquid hydrogen is typically used as a concentrated form of hydrogen storage. Storing it as liquid takes less space than storing it as a gas at normal temperature and pressure. However, the liquid density is very low compared to other common fuels. Once liquefied, it can be maintained as a liquid in thermally insulated containers. There are two spin isomers of hydrogen; whereas room temperature hydrogen is mostly orthohydrogen, liquid hydrogen consists of 99.79% parahydrogen and 0.21% orthohydrogen. Hydrogen requires a theoretical minimum of 3.3 kWh/kg to liquefy, and 3.9 kWh/kg including converting the hydrogen to the para isomer, but practically generally takes 10-13 kWh/kg compared to a 33 kWh/kg heating value of hydrogen. In 1885, Zygmunt Florenty Wróblewski published hydrogen's critical temperature as ; critical pressure, 13.3 atmospheres; and boiling point, . Hydrogen was liquefied by James Dewar in 1898 by using regenerative cooling and his invention, the vacuum flask. The first synthesis of the stable isomer form of liquid hydrogen, parahydrogen, was achieved by Paul Harteck and Karl Friedrich Bonhoeffer in 1929. Spin isomers of hydrogen The two nuclei in a dihydrogen molecule can have two different spin states. Parahydrogen, in which the two nuclear spins are antiparallel, is more stable than orthohydrogen, in which the two are parallel. At room temperature, gaseous hydrogen is mostly in the ortho isomeric form due to thermal energy, but an ortho-enriched mixture is only metastable when liquified at low temperature. It slowly undergoes an exothermic reaction to become the para isomer, with enough energy released as heat to cause some of the liquid to boil.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.