Related courses (38)
MATH-207(a): Analysis IV (for SV, MT)
The course studies the fundamental concepts of complex analysis with a view to their use in solving multidisciplinary problems of scientific engineering.
ENV-614: Fourier analysis and boundary value problems
Learning Fourier Series and Boundary Value Problems with a view to a variety of science and engineering problems. Learn the use of special functions like Bessel functions and applications. Introduce t
MATH-202(c): Analysis III
The course studies the fundamental concepts of vector analysis and Fourier-Laplace analysis with a view to their use in solving multidisciplinary problems in scientific engineering.
MATH-405: Harmonic analysis
An introduction to methods of harmonic analysis. Covers convergence of Fourier series, Hilbert transform, Calderon-Zygmund theory, Fourier restriction, and applications to PDE.
MATH-511: Number theory II.a - Modular forms
In this course we will introduce core concepts of the theory of modular forms and consider several applications of this theory to combinatorics, harmonic analysis, and geometric optimization.
MICRO-310(b): Signals and systems I (for SV)
Présentation des concepts et des outils de base pour l'analyse et la caractérisation des signaux, la conception de systèmes de traitement et la modélisation linéaire de systèmes pour les étudiants en
MATH-203(c): Analysis III
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
MATH-205: Analysis IV - Lebesgue measure, Fourier analysis
Learn the basis of Lebesgue integration and Fourier analysis
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
COM-202: Signal processing
Signal processing theory and applications: discrete and continuous time signals; Fourier analysis, DFT, DTFT, CTFT, FFT, STFT; linear time invariant systems; filter design and adaptive filtering; samp

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.