ClojureClojure (ˈkloʊʒər, like closure) is a dynamic and functional dialect of the Lisp programming language on the Java platform. Like most other Lisps, Clojure's syntax is built on S-expressions that are first parsed into data structures by a reader before being compiled. Clojure's reader supports literal syntax for maps, sets and vectors along with lists, and these are compiled to the mentioned structures directly. Clojure treats code as data and has a Lisp macro system.
Common Language RuntimeThe Common Language Runtime (CLR), the virtual machine component of Microsoft .NET Framework, manages the execution of .NET programs. Just-in-time compilation converts the managed code (compiled intermediate language code) into machine instructions which are then executed on the CPU of the computer. The CLR provides additional services including memory management, type safety, exception handling, garbage collection, security and thread management. All programs written for the .
Turing AwardThe ACM A. M. Turing Award is an annual prize given by the Association for Computing Machinery (ACM) for contributions of lasting and major technical importance to computer science. It is generally recognized as the highest distinction in computer science and is colloquially known as or often referred to as the "Nobel Prize of Computing". The award is named after Alan Turing, who was a British mathematician and reader in mathematics at the University of Manchester.
Go (programming language)Go is a statically typed, compiled high-level programming language designed at Google by Robert Griesemer, Rob Pike, and Ken Thompson. It is syntactically similar to C, but also has memory safety, garbage collection, structural typing, and CSP-style concurrency. It is often referred to as Golang because of its former domain name, golang.org, but its proper name is Go. There are two major implementations: Google's self-hosting "gc" compiler toolchain, targeting multiple operating systems and WebAssembly.
MetaprogrammingMetaprogramming is a programming technique in which computer programs have the ability to treat other programs as their data. It means that a program can be designed to read, generate, analyze or transform other programs, and even modify itself while running. In some cases, this allows programmers to minimize the number of lines of code to express a solution, in turn reducing development time. It also allows programs a greater flexibility to efficiently handle new situations without recompilation.
Associative arrayIn computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays.
Java virtual machineA Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as programs written in other languages that are also compiled to Java bytecode. The JVM is detailed by a specification that formally describes what is required in a JVM implementation. Having a specification ensures interoperability of Java programs across different implementations so that program authors using the Java Development Kit (JDK) need not worry about idiosyncrasies of the underlying hardware platform.
Call stackIn computer science, a call stack is a stack data structure that stores information about the active subroutines of a computer program. This kind of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to just "the stack". Although maintenance of the call stack is important for the proper functioning of most software, the details are normally hidden and automatic in high-level programming languages.
Eiffel (programming language)Eiffel is an object-oriented programming language designed by Bertrand Meyer (an object-orientation proponent and author of Object-Oriented Software Construction) and Eiffel Software. Meyer conceived the language in 1985 with the goal of increasing the reliability of commercial software development; the first version becoming available in 1986. In 2005, Eiffel became an ISO-standardized language. The design of the language is closely connected with the Eiffel programming method.
Reflective programmingIn computer science, reflective programming or reflection is the ability of a process to examine, introspect, and modify its own structure and behavior. The earliest computers were programmed in their native assembly languages, which were inherently reflective, as these original architectures could be programmed by defining instructions as data and using self-modifying code. As the bulk of programming moved to higher-level compiled languages such as Algol, Cobol, Fortran, Pascal, and C, this reflective ability largely disappeared until new programming languages with reflection built into their type systems appeared.