In computer hardware, a CPU socket or CPU slot contains one or more mechanical components providing mechanical and electrical connections between a microprocessor and a printed circuit board (PCB). This allows for placing and replacing the central processing unit (CPU) without soldering. Common sockets have retention clips that apply a constant force, which must be overcome when a device is inserted. For chips with many pins, zero insertion force (ZIF) sockets are preferred. Common sockets include Pin Grid Array (PGA) or Land Grid Array (LGA). These designs apply a compression force once either a handle (PGA type) or a surface plate (LGA type) is put into place. This provides superior mechanical retention while avoiding the risk of bending pins when inserting the chip into the socket. Certain devices use Ball Grid Array (BGA) sockets, although these require soldering and are generally not considered user replaceable. CPU sockets are used on the motherboard in desktop and server computers. Because they allow easy swapping of components, they are also used for prototyping new circuits. Laptops typically use surface-mount CPUs, which take up less space on the motherboard than a socketed part. As the pin density increases in modern sockets, increasing demands are placed on the printed circuit board fabrication technique, which permits the large number of signals to be successfully routed to nearby components. Likewise, within the chip carrier, the wire bonding technology also becomes more demanding with increasing pin counts and pin densities. Each socket technology will have specific reflow soldering requirements. As CPU and memory frequencies increase, above 30 MHz or thereabouts, electrical signalling increasingly shifts to differential signaling over parallel buses, bringing a new set of signal integrity challenges. The evolution of the CPU socket amounts to a coevolution of all these technologies in tandem. Modern CPU sockets are almost always designed in conjunction with a heat sink mounting system, or in lower power devices, other thermal considerations.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (15)
CIVIL-510: Quantitative imaging for engineers
First 2 courses are Tuesday 16-19h!This course will arm students with knowledge of different imaging techniques for practical measurements in many different fields of civil engineering. Modalities wil
CS-307: Introduction to multiprocessor architecture
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
CS-471: Advanced multiprocessor architecture
Multiprocessors are basic building blocks for all computer systems. This course covers the architecture and organization of modern multiprocessors, prevalent accelerators (e.g., GPU, TPU), and datacen
Show more
Related lectures (42)
Quantitative Imaging for Civil Engineers
Covers quantitative imaging for civil engineers, focusing on image representation, formats, color encoding, and quality assessment.
Practical Session Microscopes
Covers practical aspects of microscopes, including dark field images, resolution, and a report assignment.
Quantitative Imaging for Civil Engineers
Introduces quantitative imaging concepts for civil engineers, covering resolution, optics, image quality, and 3D measurements.
Show more
Related publications (35)

Intermediate Address Space: virtual memory optimization of heterogeneous architectures for cache-resident workloads

David Atienza Alonso, Marina Zapater Sancho, Luis Maria Costero Valero, Darong Huang, Qunyou Liu

The increasing demand for computing power and the emergence of heterogeneous computing architectures have driven the exploration of innovative techniques to address current limitations in both the compute and memory subsystems. One such solution is the use ...
2024

EdgeAI-Aware Design of In-Memory Computing Architectures

Marco Antonio Rios

Driven by the demand for real-time processing and the need to minimize latency in AI algorithms, edge computing has experienced remarkable progress. Decision-making AI applications stand out for their heavy reliance on data-centric operations, predominantl ...
EPFL2024

HetCache: Synergising NVMe Storage and GPU acceleration for Memory-Efficient Analytics

Anastasia Ailamaki, Periklis Chrysogelos, Hamish Mcniece Hill Nicholson, Syed Mohammad Aunn Raza

Accessing input data is a critical operation in data analytics: i) slow data access significantly degrades performance, and ii) storing everything in the fastest medium, i.e., memory, incurs high operational and hardware costs. Further, while GPUs offer in ...
2023
Show more
Related concepts (19)
Multi-core processor
A multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions (such as add, move data, and branch) but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques.
Pentium
Pentium is a series of x86 architecture-compatible microprocessors produced by Intel. The original Pentium was first released on March 22, 1993. Pentium-branded processors released from 2009 to 2022 are considered entry-level products that Intel rates as "two stars", meaning that they are above the low-end Atom and Celeron series, but below the faster Intel Core lineup and workstation/server Xeon series. These later Pentium processors have little more than their name in common with earlier Pentiums, which were Intel's flagship processor for over a decade until the introduction of the Intel Core line in 2006.
WinChip
The WinChip series was a low-power Socket 7-based x86 processor designed by Centaur Technology and marketed by its parent company IDT. The design of the WinChip was quite different from other processors of the time. Instead of a large gate count and die area, IDT, using its experience from the RISC processor market, created a small and electrically efficient processor similar to the 80486, because of its single pipeline and in-order execution microarchitecture.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.