The Next-Generation Secure Computing Base (NGSCB; codenamed Palladium and also known as Trusted Windows') is a software architecture designed by Microsoft which aimed to provide users of the Windows operating system with better privacy, security, and system integrity. NGSCB was the result of years of research and development within Microsoft to create a secure computing solution that equaled the security of closed platforms such as set-top boxes while simultaneously preserving the backward compatibility, flexibility, and openness of the Windows operating system. Microsoft's primary stated objective with NGSCB was to "protect software from software."
Part of the Trustworthy Computing initiative when unveiled in 2002, NGSCB was to be integrated with Windows Vista, then known as "Longhorn." NGSCB relied on hardware designed by the Trusted Computing Group to produce a parallel operation environment hosted by a new hypervisor (referred to as a sort of kernel in documentation) called the "Nexus" that existed alongside Windows and provided new applications with features such as hardware-based process isolation, data encryption based on integrity measurements, authentication of a local or remote machine or software configuration, and encrypted paths for user authentication and graphics output. NGSCB would facilitate the creation and distribution of digital rights management (DRM) policies pertaining the use of information.
NGSCB was subject to much controversy during its development, with critics contending that it would impose restrictions on users, enforce vendor lock-in, and undermine fair use rights and open-source software. It was first demonstrated by Microsoft at WinHEC 2003 before undergoing a revision in 2004 that would enable earlier applications to benefit from its functionality. Reports indicated in 2005 that Microsoft would change its plans with NGSCB so that it could ship Windows Vista by its self-imposed deadline year, 2006; instead, Microsoft would ship only part of the architecture, BitLocker, which can optionally use the Trusted Platform Module to validate the integrity of boot and system files prior to operating system startup.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Trusted Platform Module (TPM, also known as ISO/IEC 11889) is an international standard for a secure cryptoprocessor, a dedicated microcontroller designed to secure hardware through integrated cryptographic keys. The term can also refer to a chip conforming to the standard. One of Windows 11's system requirements is TPM 2.0. Microsoft has stated that this is to help increase security against firmware attacks. Trusted Platform Module (TPM) was conceived by a computer industry consortium called Trusted Computing Group (TCG).
Windows Vista is a major release of the Windows NT operating system developed by Microsoft as the direct successor to Windows XP, which was released in 2001. At the time, this 5-year gap was the longest time span between successive releases of Microsoft's Windows desktop operating systems. Development was finished on November 8, 2006, and over the following three months, it was released in stages to computer hardware and software manufacturers, business customers, and retail channels.
The development of Windows Vista began in May 2001, prior to the release of Microsoft's Windows XP operating system, and continuing until November 2006. Microsoft originally expected to ship the new version sometime late in 2003 as a minor step between Windows XP (codenamed "Whistler") and the next planned major release of Windows, code-named "Blackcomb". Vista's original codename, "Longhorn", was an allusion to this plan: While Whistler and Blackcomb are large ski resorts in British Columbia, Longhorn is the name of a bar between the two mountains that Whistler's visitors pass to reach Blackcomb.
Explores trusted computing, confidentiality, integrity, and side-channel attacks, emphasizing real-world examples and the challenges of ensuring security.
We present DARKFLUX, a software tool designed to analyze indirect-detection signatures for next-generation models of dark matter (DM) with multiple annihilation channels. Version 1.0 of this tool accepts user-generated models with 2 -> 2 tree-level dark ma ...
ELSEVIER2022
,
Trusted execution environments enable the creation of confidential and attestable enclaves that exclude the platform and service providers from the trusted base. From its initial attestable state, a stateful enclave such as a confidential database can hold ...
2022
,
In confidential computing, the view of the system software is Manichean: the host operating system is untrusted and the TEE runtime system is fully trusted. However, the runtime system is often as complex as a full operating system, and thus is not free fr ...