Summary
An anti-lock braking system (ABS) is a safety anti-skid braking system used on aircraft and on land vehicles, such as cars, motorcycles, trucks, and buses. ABS operates by preventing the wheels from locking up during braking, thereby maintaining tractive contact with the road surface and allowing the driver to maintain more control over the vehicle. ABS is an automated system that uses the principles of threshold braking and cadence braking, techniques which were once practiced by skillful drivers before ABS was widespread. ABS operates at a much faster rate and more effectively than most drivers could manage. Although ABS generally offers improved vehicle control and decreases stopping distances on dry and some slippery surfaces, on loose gravel or snow-covered surfaces ABS may significantly increase braking distance, while still improving steering control. Since ABS was introduced in production vehicles, such systems have become increasingly sophisticated and effective. Modern versions may not only prevent wheel lock under braking, but may also alter the front-to-rear brake bias. This latter function, depending on its specific capabilities and implementation, is known variously as electronic brakeforce distribution, traction control system, emergency brake assist, or electronic stability control (ESC). The concept for ABS predates the modern systems that were introduced in the 1950s. In 1908, for example, J.E. Francis introduced his 'Slip Prevention Regulator for Rail Vehicles'. In 1920 the French automobile and aircraft pioneer Gabriel Voisin experimented with systems that modulated the hydraulic braking pressure on his aircraft brakes to reduce the risk of tire slippage, as threshold braking on aircraft is nearly impossible. These systems used a flywheel and valve attached to a hydraulic line that feeds the brake cylinders. The flywheel is attached to a drum that runs at the same speed as the wheel. In normal braking, the drum and flywheel should spin at the same speed.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.