Truncated triheptagonal tilingIn geometry, the truncated triheptagonal tiling is a semiregular tiling of the hyperbolic plane. There is one square, one hexagon, and one tetradecagon (14-sides) on each vertex. It has Schläfli symbol of tr{7,3}. There is only one uniform coloring of a truncated triheptagonal tiling. (Naming the colors by indices around a vertex: 123.) Each triangle in this dual tiling, order 3-7 kisrhombille, represent a fundamental domain of the Wythoff construction for the symmetry group [7,3].
DodecagramIn geometry, a dodecagram () is a star polygon or compound with 12 vertices. There is one regular dodecagram polygon (with Schläfli symbol {12/5} and a turning number of 5). There are also 4 regular compounds {12/2}, {12/3}, {12/4}, and {12/6}. There is one regular form: {12/5}, containing 12 vertices, with a turning number of 5. A regular dodecagram has the same vertex arrangement as a regular dodecagon, which may be regarded as {12/1}. There are four regular dodecagram star figures: {12/2}=2{6}, {12/3}=3{4}, {12/4}=4{3}, and {12/6}=6{2}.
Desargues's theoremIn projective geometry, Desargues's theorem, named after Girard Desargues, states: Two triangles are in perspective axially if and only if they are in perspective centrally. Denote the three vertices of one triangle by a, b and c, and those of the other by A, B and C. Axial perspectivity means that lines and meet in a point, lines and meet in a second point, and lines and meet in a third point, and that these three points all lie on a common line called the axis of perspectivity.
ZonogonIn geometry, a zonogon is a centrally-symmetric, convex polygon. Equivalently, it is a convex polygon whose sides can be grouped into parallel pairs with equal lengths and opposite orientations. A regular polygon is a zonogon if and only if it has an even number of sides. Thus, the square, regular hexagon, and regular octagon are all zonogons. The four-sided zonogons are the square, the rectangles, the rhombi, and the parallelograms.