Cyril Cayron1992-1995 Engineering School. Ecole des Mines de Nancy.
1994-1995 Master's degree in Materials Science (rank = 1st)
1995-1996 Military Service
1996-2000 PhD at EPFL-CIME. Precipitation in 6xxx alloys and composites.
2000-2014 Researcher, Engineer and Group leader on materials for new energies at CEA-Grenoble, France.
2012 Habilitation to supervise researches (HDR)
2014-now Senior Scientist at EPFL-LMTM
Creator of the computer programs GenOVa and ARPGE (in Python).
I currently work on crystallographic models of martensitic transformations and deformation twinning.
Johan AuwerxJohan Auwerx is Professor at the École Polytechnique Fédérale in Lausanne, Switzerland, where he occupies the Nestle Chair in Energy Metabolism. Dr. Auwerx has been using molecular physiology and systems genetics to understand metabolism in health, aging and disease. Much of his work focused on understanding how diet, exercise and hormones control metabolism through changing the expression of genes by altering the activity of transcription factors and their associated cofactors. His work was instrumental for the development of agonists of nuclear receptors - a particular class of transcription factors - into drugs, which now are used to treat high blood lipid levels, fatty liver, and type 2 diabetes. Dr. Auwerx was amongst the first to recognize that transcriptional cofactors, which fine-tune the activity of transcription factors, act as energy sensors/effectors that influence metabolic homeostasis. His research validated these cofactors as novel targets to treat metabolic diseases, and spurred the clinical use of natural compounds, such as resveratrol, as modulators of these cofactor pathways.
Johan Auwerx was elected as a member of EMBO in 2003 and is the recipient of a dozen of international scientific prizes, including the Danone International Nutrition Award, the Oskar Minkowski Prize, and the Morgagni Gold Medal. His work is highly cited by his peers with a h-factor of over 100. He is an editorial board member of several journals, including Cell Metabolism, Molecular Systems Biology, The EMBO Journal, Journal of Cell Biology, Cell, and Science. Dr. Auwerx co-founded a handful of biotech companies, including Carex, PhytoDia, and most recently Mitobridge, and has served on several scientific advisory boards.
Dr. Auwerx received both his MD and PhD in Molecular Endocrinology at the Katholieke Universiteit in Leuven, Belgium. He was a post-doctoral research fellow in the Departments of Medicine and Genetics of the University of Washington in Seattle.
Nava SetterNava Setter completed MSc in Civil Engineering in the Technion (Israel) and PhD in Solid State Science in Penn. State University (USA) (1980). After post-doctoral work at the Universities of Oxford (UK) and Geneva (Switzerland), she joined an R&D institute in Haifa (Israel) where she became the head of the Electronic Ceramics Lab (1988). She began her affiliation with EPFL in 1989 as the Director of the Ceramics Laboratory, becoming Full Professor of Materials Science and Engineering in 1992. She had been Head of the Materials Department in the past and more recently has served as the Director of the Doctoral School for Materials.
Research at the Ceramics Laboratory, which Nava Setter directs, concerns the science and technology of functional ceramics focusing on piezoelectric and related materials: ferroelectrics, dielectrics, pyroelectrics and also ferromagnetics. The work includes fundamental and applied research and covers the various scales from the atoms to the final devices. Emphasis is given to micro- and nano-fabrication technology with ceramics and coupled theoretical and experimental studies of the functioning of ferroelectrics.
Her own research interests include ferroelectrics and piezoelectrics: in particular the effects of interfaces, finite-size and domain-wall phenomena, as well as structure-property relations and the pursuit of new applications. The leading thread in her work over the years has been the demonstration of how basic or fundamental concepts in materials - particularly ferroelectrics - can be utilized in a new way and/or in new types of devices. She has published over 450 scientific and technical papers.
Nava Setter is a Fellow of the Swiss Academy of Technical Sciences, the Institute of Electrical and Electronic Engineers (IEEE), and the World Academy of Ceramics. Among the awards she received are the Swiss-Korea Research Award, the ISIF outstanding achievement award, and the Ferroelectrics-IEEE recognition award. In 2010 her research was recognized by the European Union by the award of an ERC Advanced Investigator Grant. Recently she received the IEEE-UFFC Achievement Award (2011),the W.R. Buessem Award(2011), the Robert S. Sosman Award Lecture (American Ceramics Society) (2013), and the American Vacuum Society Recognition for Excellence in Leadership (2013).
Pierre MagistrettiPierre J. Magistretti is an internationally-recognized neuroscientist who has made significant contributions in the field of brain energy metabolism. His group has discovered some of the cellular and molecular mechanisms that underlie the coupling between neuronal activity and energy consumption by the brain.
This work has considerable ramifications for the understanding of the origin of the signals detected with the current functional brain imaging techniques used in neurological and psychiatric research (see for example Magistretti et al, Science, 283: 496 497, 1999). He is the author of over 100 articles published in peer-reviewed journals.
He has given over 80 invited lectures at international meetings or at universities in Europe and North America, including the 2000 Talairach Lecture at the Functional Mapping of the Human Brain Conference. In November 2000 he has been a Mc Donnel Visiting Scholar at Washington University School of Medicine.
Pierre J. Magistretti is the President-Elect (2002 2004) of the Federation of European Neuroscience Societies (FENS) which has a membership of over 15000 European neuroscientists. He has been first president of the Swiss Society for Neuroscience (1997-1999) and the first Chairman of the Department of Neurosciences of the University of Lausanne (1996 1998).
Pierre J. Magistretti is Professor of Physiology (since 1988) at the University of Lausanne Medical School. He has been Vice-Dean of the University of Lausanne Medical School from 1996 to 2000. Pierre Magistretti, is Director of the Brain Mind Institute at EPFL and Director of the Center for Psychiatric Neuroscience of the University of Lausanne and CHUV. He is also Director of the NCCR SYNAPSY "the synaptic bases of mental diseases".
POSITIONS AND HONORS
MAIN POSITION HELD
1988-2004 Professor of Physiology, University of Lausanne Medical School
1996-2000 Vice-Dean for Preclinical Departments, University of Lausanne Medical School
2001-2004 Chairman, Department of Physiology, University of Lausanne Medical School
2004-present Professor and Director, Center for Psychiatric Neuroscience, Department of Psychiatry, University of Lausanne Medical School and Hospitals (UNIL-CHUV) (Joint appointment with EPFL)
2005-2008 Professor and Co-Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne (Joint appointment with UNIL-CHUV)
2007-present Chairman of the Scientific Advisory Board of Centre dImagerie Biomédicale (CIBM), an Imaging Consortium of the Universities, University Hospitals of Lausanne and Geneva and of Ecole Polytechnique Fédérale de Lausanne
2008-present Professor and Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne Joint appointment with UNIL-CHUV)
2010-present Director, National Center for Competence in Research (NCCR)
The synaptic bases of mental diseases of the Swiss National Science Foundation
2010-present Secretary General, International Brain Research Organization (IBRO)
MAIN HONORS AND AWARDS
1997 Recipient of the Theodore-Ott Prize of the Swiss Academy of Medical Sciences
2001 Elected Member of Academia Europaea
2001 Elected Member of the Swiss Academy of Medical Sciences, ad personam
2002 Recipient of the Emil Kraepelin Guest Professorship, Max Planck Institute für Psychiatry, Münich
2006 Elected Professor at Collège de France, Paris, International Chair 2007-2008
2009 Goethe Award for Psychoanalytic Scholarship, Canadian Psychological Association
2011 Camillo Golgi Medal Award, Golgi Fondation
2011 Elected Member of the American College of NeuroPsychopharmacology (ACNP)
Alexander MathisAlexander studied pure mathematics with a minor in logic and theory of science at the Ludwig Maximilians University in Munich. For his PhD also at LMU, he worked on optimal coding approaches to elucidate the properties of grid cells. As a postdoctoral fellow with Prof. Venkatesh N. Murthy at Harvard University and Prof. Matthias Bethge at Tuebingen AI, he decided to study olfactory behaviors such as odor-guided navigation, social behaviors and the cocktail party problem in mice. During this time, he increasingly got interested sensorimotor behaviors beyond olfaction and started working on proprioception, motor adaption, as well as computer vision tools for measuring animal behavior.
In his group, he is interested in elucidating how the brain gives rise to adaptive behavior. One of the major goals is to synthesize large datasets into computationally useful information. For those purposes, he develops algorithms and systems to analyze animal behavior (e.g. DeepLabCut), neural data, as well as creates experimentally testable computational models.
Sangwoo KimSangwoo Kim is set to join EPFL as a Tenure Track Assistant Professor in September 2023. Prior to his appointment at EPFL, he served as a postdoctoral fellow in the Department of Mechanical Engineering at the University of California, Santa Barbara. He earned his graduate degree in Theoretical and Applied Mechanics from the University of Illinois at Urbana-Champaign, where his research delved into the relationships between statistics, geometry, and mechanical states in cellular matters. Currently, his research focus on fundamental understanding of biological and living systems, as well as the study of soft and active matter employing principles from mechanics and physics. His research interests encompass embryonic development, tissue morphogenesis, structure and mechanics of soft materials, inherent structure of amorphous materials, and non-equilibrium dynamics of active matter.