Concept

Skeletal muscle pump

The skeletal muscle pump or musculovenous pump is a collection of skeletal muscles that aid the heart in the circulation of blood. It is especially important in increasing venous return to the heart, but may also play a role in arterial blood flow. The skeletal muscle pump is vital in negating orthostatic intolerance when standing. When moving upright, the blood volume moves to the peripheral parts of the body. To combat this, the muscles involved in standing contract and help to bring venous blood volume to the heart. The pump is important in affecting the central and local supply of blood output. Venous return, cardiac output, and stroke volume were all increased during exercise experiments, as well as affecting the local muscle being used, blood volume. Between muscle relaxations, intramuscular pressure transiently returns to a level below the venous blood pressure. This allows blood from the capillary system to refill the veins until the next contraction. It is postulated that this change in pressure may be great enough to draw blood from the arterial side to the venous side. It is hypothesized that this pressure drop during rhythmic contraction actually increases blood flow through the muscle, and may be responsible for a portion of the increase in muscle blood flow immediately at the onset of activity. This explanation is attractive, because it would explain the readily observable tight coupling between muscle contraction and a rapid increase in muscle blood flow. However, recent evidence has emerged that cast doubts on this theory. Experiments have shown that a strong muscle contraction can occur without a corresponding increase in skeletal muscle blood flow. Given the proposed manner of action of the muscle pump to increase arterial blood flow, it would seem impossible for a muscle contraction and skeletal muscle hyperemia to be uncoupled. Another experiment recently was only able to find evidence that vasodilation, not the skeletal muscle pump, was responsible for maintaining proper pressure and blood return.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.