Concept

Aconitine

Summary
Aconitine is an alkaloid toxin produced by various plant species belonging to the genus Aconitum (family Ranunculaceae), known also commonly by the names wolfsbane and monkshood. Monkshood is notorious for its toxic properties. Biologically active isolates from Aconitum and Delphinium plants are classified as norditerpenoid alkaloids, which are further subdivided based on the presence or absence of the C18 carbon. Aconitine is a C19-norditerpenoid, based on its presence of this C18 carbon. It is barely soluble in water, but very soluble in organic solvents such as chloroform or diethyl ether. Aconitine is also soluble in mixtures of alcohol and water if the concentration of alcohol is high enough. Like many other alkaloids, the basic nitrogen atom in one of the six-membered ring structure of aconitine can easily form salts and ions, giving it affinity for both polar and lipophilic structures (such as cell membranes and receptors) and making it possible for the molecule to pass the blood–brain barrier. The acetoxyl group at the c8 position can readily be replaced by a methoxy group, by heating aconitine in methanol, to produce a 8-deacetyl-8-O-methyl derivatives. If aconitine is heated in its dry state, it undergoes a pyrolysis to form pyroaconitine ((1α,3α,6α,14α,16β)-20-ethyl-3,13-dihydroxy-1,6,16-trimethoxy-4-(methoxymethyl)-15-oxoaconitan-14-yl benzoate) with the chemical formula C32H43NO9. Aconitine can interact with the voltage-dependent sodium-ion channels, which are proteins in the cell membranes of excitable tissues, such as cardiac and skeletal muscles and neurons. These proteins are highly selective for sodium ions. They open very quickly to depolarize the cell membrane potential, causing the upstroke of an action potential. Normally, the sodium channels close very rapidly, but the depolarization of the membrane potential causes the opening (activation) of potassium channels and potassium efflux, which results in repolarization of the membrane potential.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.