Metamath is a formal language and an associated computer program (a proof checker) for archiving, verifying, and studying mathematical proofs. Several databases of proved theorems have been developed using Metamath covering standard results in logic, set theory, number theory, algebra, topology and analysis, among others.
the set of proved theorems using Metamath is one of the largest bodies of formalized mathematics, containing in particular proofs of 74 of the 100 theorems of the "Formalizing 100 Theorems" challenge, making it fourth after HOL Light, Isabelle, and Coq, but before Mizar, ProofPower, Lean, Nqthm, ACL2, and Nuprl. There are at least 19 proof verifiers for databases that use the Metamath format.
This project is the first one of its kind that allows for interactive browsing of its formalized theorems database in the form of an ordinary website.
The Metamath language is a metalanguage, suitable for developing a wide variety of formal systems. The Metamath language has no specific logic embedded in it. Instead, it can simply be regarded as a way to prove that inference rules (asserted as axioms or proven later) can be applied.
The largest database of proved theorems follows conventional ZFC set theory and classic logic, but other databases exist and others can be created.
The Metamath language design is focused on simplicity; the language, employed to state the definitions, axioms, inference rules and theorems is only composed of a handful of keywords, and all the proofs are checked using one simple algorithm based on the substitution of variables (with optional provisos for what variables must remain distinct after a substitution is made).
The set of symbols that can be used for constructing formulas is declared using c(constantsymbols)andv (variable symbols) statements; for example:
(Declaretheconstantsymbolswewilluse)
c0+=−>()termwff∣−.
(Declarethemetavariableswewilluse)
vtrsPQ.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A hands-on introduction to interactive theorem proving, proofs as programs, dependent types, and to the Coq proof assistant. Come learn how to write bug-free code!
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
The Isabelle automated theorem prover is a higher-order logic (HOL) theorem prover, written in Standard ML and Scala. As an LCF-style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring yet supporting explicit proof objects. Isabelle is available inside a flexible system framework allowing for logically safe extensions, which comprise both theories as well as implementations for code-generation, documentation, and specific support for a variety of formal methods.
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
In mathematical physics, Hilbert system is an infrequently used term for a physical system described by a C*-algebra. In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.
We present LISA, a proof system and proof assistant for constructing proofs in schematic first-order logic and axiomatic set theory. The logical kernel of the system is a proof checker for first-order logic with equality and schematic predicate and fun ...
2023
, , ,
We present a Network Address Translator (NAT) written in C and proven to be semantically correct according to RFC 3022, as well as crash-free and memory-safe. There exists a lot of recent work on network verification, but it mostly assumes models of networ ...
Assoc Computing Machinery2017
This article presents Axiom, a DTLS-based approach to efficiently secure multicast group communication among IoT-constrained devices. Axiom provides an adaptation of the DTLS record layer, relies on key material commonly shared among the group members, and ...