**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Sinusoidal plane wave

Summary

In physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave, with constant frequency (as in monochromatic radiation).
For any position in space and any time , the value of such a field can be written as
where is a unit-length vector, the direction of propagation of the wave, and "" denotes the dot product of two vectors. The parameter , which may be a scalar or a vector, is called the amplitude of the wave; the coefficient , a positive scalar, its spatial frequency; and the adimensional scalar , an angle in radians, is its initial phase or phase shift.
The scalar quantity gives the (signed) displacement of the point from the plane that is perpendicular to and goes through the origin of the coordinate system. This quantity is constant over each plane perpendicular to .
At time , the field varies with the displacement as a sinusoidal function
The spatial frequency is the number of full cycles per unit of length along the direction .
For any other value of , the field values are displaced by the distance in the direction . That is, the whole field seems to travel in that direction with velocity .
For each displacement , the moving plane perpendicular to at distance from the origin is called a wavefront. This plane lies at distance from the origin when , and travels in the direction also with speed ; and the value of the field is then the same, and constant in time, at every one of its points.
A sinusoidal plane wave could be a suitable model for a sound wave within a volume of air that is small compared to the distance of the source (provided that there are no echos from nearly objects). In that case, would be a scalar field, the deviation of air pressure at point and time , away from its normal level.
At any fixed point , the field will also vary sinusoidally with time; it will be a scalar multiple of the amplitude , between and
When the amplitude is a vector orthogonal to , the wave is said to be transverse.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (2)

Related concepts (1)

Related publications (102)

Related courses (16)

Related units (9)

Related people (30)

Plane wave

In physics, a plane wave is a special case of wave or field: a physical quantity whose value, at any moment, is constant through any plane that is perpendicular to a fixed direction in space. For any position in space and any time , the value of such a field can be written as where is a unit-length vector, and is a function that gives the field's value as dependent on only two real parameters: the time , and the scalar-valued displacement of the point along the direction . The displacement is constant over each plane perpendicular to .

Related lectures (63)

Electrical Engineering I

Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.

Electrical Engineering I

Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.

PHYS-636: General aspects of the electronic structure of crystals

The course is aimed at giving a general understanding and building a feeling of what electronic states inside a crystal are.

EE-200: Electromagnetics I : Transmission lines and waves

Le signal électrique est un vecteur essentiel pour la transmission d'information et d'énergie. En haute fréquence elle se manifeste comme un signal électromagnétique dont l'étude demande le développem

PHYS-317: Optics I

L'optique est un vieux domaine qui touche à beaucoup de sujets modernes, des techniques expérimentales aux applications courantes. Ce premier cours traite plusieurs aspects de base de l'optique: propa

, , , , , , , , ,

Reconstruction: Sampling Theorem and Stroboscopic Effect ExplainedCS-119(d): Information, Computation, Communication

Explores the stroboscopic effect and the impact of inverting time on signal reconstruction.

Induced Voltage and Winding, Rotating FieldMICRO-314: Actuators and Electromagnetic systems IIMOOC: Conversion electromécanique II

Explains induced voltage in motion and its impact on rotating fields.

Sinusoidal Quantities: Analytical Expressions and ParametersMICRO-100: Electrotechnics IMOOC: Electrical Engineering I

Covers the analytical expressions and parameter definitions of sinusoidal quantities in electrical engineering.

We demonstrate the use of both pixelated differential phase contrast (DPC) scanning transmission electron microscopy (STEM) and off-axis electron holography (EH) for the measurement of electric fields and assess the advantages and limitations of each techn ...

In the attempt to reduce fuel consumption, a new generation of Ultra-High-By-Pass-Ratio (UHBR) turbofans have been introduced in the aeronautic industry which are structurally noisier especially at lower frequencies, because of their larger diameter, lower ...

Ambrogio Fasoli, Ivo Furno, Patrick Blanchard, Yanis Andrebe, Riccardo Agnello, Christine Stollberg, Sun Hee Kim, Alban Sublet, Shuai Liu

Experimental results show that hosing of a long particle bunch in plasma can be induced by wakefields driven by a short, misaligned preceding bunch. Hosing develops in the plane of misalignment, selfmodulation in the perpendicular plane, at frequencies clo ...