The supraoptic nucleus (SON) is a nucleus of magnocellular neurosecretory cells in the hypothalamus of the mammalian brain. The nucleus is situated at the base of the brain, adjacent to the optic chiasm. In humans, the SON contains about 3,000 neurons.
The cell bodies produce the peptide hormone vasopressin, which is also known as anti-diuretic hormone (ADH), and the peptide hormone oxytocin. Both of these peptides are released from the posterior pituitary. ADH travels via the bloodstream to its target cells in the papillary ducts in the kidneys, enhancing water reabsorption. OT travels via the bloodstream to act at the mammary glands and the uterus.
In the cell bodies, the hormones are packaged in large, membrane-bound vesicles that are transported down the axons to the nerve endings. The secretory granules are also stored in packets along the axon called Herring bodies.
Similar magnocellular neurons are also found in the paraventricular nucleus.
Each neuron in the nucleus has one long axon that projects to the posterior pituitary gland, where it gives rise to about 10,000 neurosecretory nerve terminals. The magnocellular neurons are electrically excitable: In response to afferent stimuli from other neurons, they generate action potentials, which propagate down the axons. When an action potential invades a neurosecretory terminal, the terminal is depolarised, and calcium enters the terminal through voltage-gated channels. The calcium entry triggers the secretion of some of the vesicles by a process known as exocytosis. The vesicle contents are released into the extracellular space, from where they diffuse into the bloodstream.
Vasopressin (antidiuretic hormone, ADH) is released in response to solute concentration in the blood, decreased blood volume, or blood pressure.
Some other inputs come from the brainstem, including from some of the noradrenergic neurons of the nucleus of the solitary tract and the ventrolateral medulla. However, many of the direct inputs to the supraoptic nucleus come from neurons just outside the nucleus (the "perinuclear zone").
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours permet aux étudiants ayant suivi Morphologie I de réviser et d'approfondir leurs connaissances par l'étude de l'anatomie radiologique et du développement. L'origine de malformations fréquente
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
The paraventricular nucleus (PVN, PVA, or PVH) is a nucleus in the hypothalamus. Anatomically, it is adjacent to the third ventricle and many of its neurons project to the posterior pituitary. These projecting neurons secrete oxytocin and a smaller amount of vasopressin, otherwise the nucleus also secretes corticotropin-releasing hormone (CRH) and thyrotropin-releasing hormone (TRH). CRH and TRH are secreted into the hypophyseal portal system and act on different targets neurons in the anterior pituitary.
Magnocellular neurosecretory cells are large neuroendocrine cells within the supraoptic nucleus and paraventricular nucleus of the hypothalamus. They are also found in smaller numbers in accessory cell groups between these two nuclei, the largest one being the circular nucleus. There are two types of magnocellular neurosecretory cells, oxytocin-producing cells and vasopressin-producing cells, but a small number can produce both hormones. These cells are neuroendocrine neurons, are electrically excitable, and generate action potentials in response to afferent stimulation.
The posterior pituitary (or neurohypophysis) is the posterior lobe of the pituitary gland which is part of the endocrine system. The posterior pituitary is not glandular as is the anterior pituitary. Instead, it is largely a collection of axonal projections from the hypothalamus that terminate behind the anterior pituitary, and serve as a site for the secretion of neurohypophysial hormones (oxytocin and vasopressin) directly into the blood.
Covers the development of the central nervous system and the secretion of growth hormone, along with the treatment of acromegaly using somatostatin analogs.
The brain operates through the synaptic interaction of distant neurons within flexible, often heterogeneous, distributed systems. Histological studies have detailed the connections between distant neurons, but their functional characterization deserves fur ...
Important brainstem regions are involved in the regulation of rapid eye movement sleep. We hypothesized that brainstem stroke is associated with dysregulated rapid eye movement sleep and related muscle activity. We compared quantitative/qualitative polysom ...
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory ...