Windows Vista introduced a number of new I/O functions to the Microsoft Windows line of operating systems. They are intended to shorten the time taken to boot the system, improve the responsiveness of the system, and improve the reliability of data storage.
Vista modifies the behavior of asynchronous I/O operations. With the new asynchronous I/O APIs, a thread, different from the one that issued the I/O request, can be notified when the operation completes. With this, a single thread can issue all the I/O requests, and then switch to a different worker thread. If this thread is the one that handles the data after the I/O request completes, then a thread-switch, which causes a performance hit, may be avoided. Windows Vista also introduces synchronous I/O cancellation. During a synchronous I/O request, the application is blocked until the request is serviced or fails. In Windows Vista the application may issue a cancellation request. Applications that cancel the operation on user feedback may prefer to enable user feedback during the time the issuing thread is suspended for usability.
Windows Vista also implements I/O scheduling as prioritized I/O. Disk I/O requests in Windows Vista are assigned priorities; a higher priority request is given preferential treatment, over a request that has a lower priority, during the execution of the request. Windows Vista defines five priority classes – Very Low, Low, Normal, High and Critical. By default I/O requests are assigned Normal priority. Windows Vista also allows reservation of bandwidth on a per-application basis during disk access; this aims to guarantee the required throughput rate to the application when it accesses the disk. Both these features are used by Windows Media Player with respect to media playback. Disk Defragmenter, SuperFetch, Windows Defender, Windows Search, and applications that run at startup all use prioritized I/O.
Prior to Windows Vista, all I/O requests were capped at 64 KB; thus larger operations had to be completed in chunks.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A roaming user profile is a concept in the Windows NT family of operating systems that allows users with a computer joined to a Windows domain to log on to any computer on the same domain and access their documents and have a consistent desktop experience, such as applications remembering toolbar positions and preferences, or the desktop appearance staying the same, while keeping all related files stored locally, to not continuously depend on a fast and reliable network connection to a .
Windows Vista (formerly codenamed Windows "Longhorn") has many significant new features compared with previous Microsoft Windows versions, covering most aspects of the operating system. In addition to the new user interface, security capabilities, and developer technologies, several major components of the core operating system were redesigned, most notably the audio, print, display, and networking subsystems; while the results of this work will be visible to software developers, end-users will only see what appear to be evolutionary changes in the user interface.
Windows Search (also known as Instant Search) is a content index desktop search platform by Microsoft introduced in Windows Vista as a replacement for both the previous Indexing Service of Windows 2000 and the optional MSN Desktop Search for Windows XP and Windows Server 2003, designed to facilitate local and remote queries for files and non-file items in compatible applications including Windows Explorer. It was developed after the postponement of WinFS and introduced to Windows constituents originally touted as benefits of that platform.
Micro-architectural behavior of traditional disk-based online transaction processing (OLTP) systems has been investigated extensively over the past couple of decades. Results show that traditional OLTP systems mostly under-utilize the available micro-archi ...
2021
, , ,
Micro-architectural behavior of traditional disk-based online transaction processing (OLTP) systems has been investigated extensively over the past couple of decades. Results show that traditional OLTP mostly under-utilize the available micro-architectural ...