Matrix additionIn mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector, , adding two matrices would have the geometric effect of applying each matrix transformation separately onto , then adding the transformed vectors. However, there are other operations that could also be considered addition for matrices, such as the direct sum and the Kronecker sum. Two matrices must have an equal number of rows and columns to be added.
Disjoint unionIn mathematics, a disjoint union (or discriminated union) of a family of sets is a set often denoted by with an injection of each into such that the of these injections form a partition of (that is, each element of belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their union. In , the disjoint union is the coproduct of the , and thus defined up to a bijection. In this context, the notation is often used. The disjoint union of two sets and is written with infix notation as .
Multiplication and repeated additionIn mathematics education, there was a debate on the issue of whether the operation of multiplication should be taught as being a form of repeated addition. Participants in the debate brought up multiple perspectives, including axioms of arithmetic, pedagogy, learning and instructional design, history of mathematics, philosophy of mathematics, and computer-based mathematics. In the early 1990s Leslie Steffe proposed the counting scheme children use to assimilate multiplication into their mathematical knowledge.
Method of complementsIn mathematics and computing, the method of complements is a technique to encode a symmetric range of positive and negative integers in a way that they can use the same algorithm (or mechanism) for addition throughout the whole range. For a given number of places half of the possible representations of numbers encode the positive numbers, the other half represents their respective additive inverses. The pairs of mutually additive inverse numbers are called complements. Thus subtraction of any number is implemented by adding its complement.
Dyadic rationalIn mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also have applications in weights and measures, musical time signatures, and early mathematics education. They can accurately approximate any real number.
Adding machineAn adding machine is a class of mechanical calculator, usually specialized for bookkeeping calculations. In the United States, the earliest adding machines were usually built to read in dollars and cents. Adding machines were ubiquitous office equipment until they were phased out in favor of calculators in the 1970s and by personal computers beginning in about 1985. The older adding machines were rarely seen in American office settings by the year 2000. Blaise Pascal and Wilhelm Schickard were the two original inventors of the mechanical calculator in 1642.