Concept

Cevian

In geometry, a cevian is a line segment which joins a vertex of a triangle to a point on the opposite side of the triangle. Medians and angle bisectors are special cases of cevians. The name "cevian" comes from the Italian mathematician Giovanni Ceva, who proved a well-known theorem about cevians which also bears his name. The length of a cevian can be determined by Stewart's theorem: in the diagram, the cevian length d is given by the formula Less commonly, this is also represented (with some rearrangement) by the following mnemonic: If the cevian happens to be a median (thus bisecting a side), its length can be determined from the formula or since Hence in this case If the cevian happens to be an angle bisector, its length obeys the formulas and and where the semiperimeter The side of length a is divided in the proportion b : c. If the cevian happens to be an altitude and thus perpendicular to a side, its length obeys the formulas and where the semiperimeter There are various properties of the ratios of lengths formed by three cevians all passing through the same arbitrary interior point: Referring to the diagram at right, The first property is known as Ceva's theorem. The last two properties are equivalent because summing the two equations gives the identity 1 + 1 + 1 = 3. A splitter of a triangle is a cevian that bisects the perimeter. The three splitters concur at the Nagel point of the triangle. Three of the area bisectors of a triangle are its medians, which connect the vertices to the opposite side midpoints. Thus a uniform-density triangle would in principle balance on a razor supporting any of the medians. If from each vertex of a triangle two cevians are drawn so as to trisect the angle (divide it into three equal angles), then the six cevians intersect in pairs to form an equilateral triangle, called the Morley triangle. Routh's theorem determines the ratio of the area of a given triangle to that of a triangle formed by the pairwise intersections of three cevians, one from each vertex.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.