Concept

Molniya orbit

Summary
A Molniya orbit (Молния, "Lightning") is a type of satellite orbit designed to provide communications and remote sensing coverage over high latitudes. It is a highly elliptical orbit with an inclination of 63.4 degrees, an argument of perigee of 270 degrees, and an orbital period of approximately half a sidereal day. The name comes from the Molniya satellites, a series of Soviet/Russian civilian and military communications satellites which have used this type of orbit since the mid-1960s. The Molniya orbit has a long dwell time over the hemisphere of interest, while moving very quickly over the other. In practice, this places it over either Russia or Canada for the majority of its orbit, providing a high angle of view to communications and monitoring satellites covering these high-latitude areas. Geostationary orbits, which are necessarily inclined over the equator, can only view these regions from a low angle, hampering performance. In practice, a satellite in a Molniya orbit serves the same purpose for high latitudes as a geostationary satellite does for equatorial regions, except that multiple satellites are required for continuous coverage. Satellites placed in Molniya orbits have been used for television broadcasting, telecommunications, military communications, relaying, weather monitoring, early warning systems and some classified purposes. The Molniya orbit was discovered by Soviet scientists in the 1960s as a high-latitude communications alternative to geostationary orbits, which require large launch energies to achieve a high perigee and to change inclination to orbit over the equator (especially when launched from Russian latitudes). As a result, OKB-1 sought a less energy-demanding orbit. Studies found that this could be achieved using a highly elliptical orbit with an apogee over Russian territory. The orbit's name refers to the "lightning" speed with which the satellite passes through the perigee. The first use of the Molniya orbit was by the communications satellite series of the same name.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.