Concept

Identifier (computer languages)

Summary
In computer programming languages, an identifier is a lexical token (also called a symbol, but not to be confused with the symbol primitive data type) that names the language's entities. Some of the kinds of entities an identifier might denote include variables, data types, labels, subroutines, and modules. Which character sequences constitute identifiers depends on the lexical grammar of the language. A common rule is alphanumeric sequences, with underscore also allowed (in some languages, _ is not allowed), and with the condition that it can not begin with a numerical digit (to simplify lexing by avoiding confusing with integer literals) – so foo, foo1, foo_bar, _foo are allowed, but 1foo is not – this is the definition used in earlier versions of C and C++, Python, and many other languages. Later versions of these languages, along with many other modern languages, support many more Unicode characters in an identifier. However, a common restriction is not to permit whitespace characters and language operators; this simplifies tokenization by making it free-form and context-free. For example, forbidding + in identifiers due to its use as a binary operation means that a+b and a + b can be tokenized the same, while if it were allowed, a+b would be an identifier, not an addition. Whitespace in identifier is particularly problematic, as if spaces are allowed in identifiers, then a clause such as if rainy day then 1 is legal, with rainy day as an identifier, but tokenizing this requires the phrasal context of being in the condition of an if clause. Some languages do allow spaces in identifiers, however, such as ALGOL 68 and some ALGOL variants – for example, the following is a valid statement: real half pi; which could be entered as .real. half pi; (keywords are represented in boldface, concretely via stropping). In ALGOL this was possible because keywords are syntactically differentiated, so there is no risk of collision or ambiguity, spaces are eliminated during the line reconstruction phase, and the source was processed via scannerless parsing, so lexing could be context-sensitive.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.