A water distribution system is a part of water supply network with components that carry potable water from a centralized treatment plant or wells to consumers to satisfy residential, commercial, industrial and fire fighting requirements.
Water distribution network is the term for the portion of a water distribution system up to the service points of bulk water consumers or demand nodes where many consumers are lumped together. The World Health Organization (WHO) uses the term water transmission system for a network of pipes, generally in a tree-like structure, that is used to convey water from water treatment plants to service reservoirs, and uses the term water distribution system for a network of pipes that generally has a loop structure to supply water from the service reservoirs and balancing reservoirs to consumers.
A water distribution system consists of pipelines, storage facilities, pumps, and other accessories.
Pipelines laid within public right of way called water mains are used to transport water within a distribution system. Large diameter water mains called primary feeders are used to connect between water treatment plants and service areas. Secondary feeders are connected between primary feeders and distributors. Distributors are water mains that are located near the water users, which also supply water to individual fire hydrants. A service line is a small diameter pipe used to connect from a water main through a small tap to a water meter at user's location. There is a service valve (also known as curb stop) on the service line located near street curb to shut off water to the user's location.
Storage facilities, or distribution reservoirs, provide clean drinking water storage (after required water treatment process) to ensure the system has enough water to service in response to fluctuating demands (service reservoirs), or to equalize the operating pressure (balancing reservoirs). They can also be temporarily used to serve fire fighting demands during a power outage.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les systèmes eaux et déchets en Suisse: du traitement end-of-pipe à la fermeture des cycles. Principes de l'adduction, de l'évacuation et du traitement des eaux. Bases du dimensionnement des ouvrages,
Explores water needs, consumption consequences, hydraulic economy, and soil salinization, emphasizing the impact of water withdrawals and the quality of drinking water.
Access to safe water sources, whenever needed, is a human right. However, attending to this fundamental right remains challenging in informal settlements. Consequently, these settlements are more exposed to risk factors of several diseases related to the l ...
2023
, ,
Human adenoviruses are ubiquitous contaminants of surface water. Indigenous protists may interact with adenoviruses and contribute to their removal from the water column, though the associated kinetics and mechanisms differ between protist species. In this ...
Chemical oxidants including ozone (O3), chlorine (HOCl/OCl-) and chlorine dioxide (ClO2) are applied for disinfection of drinking water. To cope with water scarcity and the increased risks associated with the presence of micropollutants, water treatment sy ...