Context-free grammarIn formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules can be applied to a nonterminal symbol regardless of its context. In particular, in a context-free grammar, each production rule is of the form with a single nonterminal symbol, and a string of terminals and/or nonterminals ( can be empty). Regardless of which symbols surround it, the single nonterminal on the left hand side can always be replaced by on the right hand side.
Context-sensitive languageIn formal language theory, a context-sensitive language is a language that can be defined by a context-sensitive grammar (and equivalently by a noncontracting grammar). Context-sensitive is one of the four types of grammars in the Chomsky hierarchy. Computationally, a context-sensitive language is equivalent to a linear bounded nondeterministic Turing machine, also called a linear bounded automaton. That is a non-deterministic Turing machine with a tape of only cells, where is the size of the input and is a constant associated with the machine.
Formal grammarIn formal language theory, a grammar (when the context is not given, often called a formal grammar for clarity) describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them in whatever context—only their form. A formal grammar is defined as a set of production rules for such strings in a formal language. Formal language theory, the discipline that studies formal grammars and languages, is a branch of applied mathematics.
Tree-adjoining grammarTree-adjoining grammar (TAG) is a grammar formalism defined by Aravind Joshi. Tree-adjoining grammars are somewhat similar to context-free grammars, but the elementary unit of rewriting is the tree rather than the symbol. Whereas context-free grammars have rules for rewriting symbols as strings of other symbols, tree-adjoining grammars have rules for rewriting the nodes of trees as other trees (see tree (graph theory) and tree (data structure)).
Embedded pushdown automatonAn embedded pushdown automaton or EPDA is a computational model for parsing languages generated by tree-adjoining grammars (TAGs). It is similar to the context-free grammar-parsing pushdown automaton, but instead of using a plain stack to store symbols, it has a stack of iterated stacks that store symbols, giving TAGs a generative capacity between context-free and context-sensitive grammars, or a subset of mildly context-sensitive grammars. Embedded pushdown automata should not be confused with nested stack automata which have more computational power.
Noncontracting grammarIn formal language theory, a grammar is noncontracting (or monotonic) if for all of its production rules, α → β (where α and β are strings of nonterminal and terminal symbols), it holds that |α| ≤ |β|, that is β has at least as many symbols as α. A grammar is essentially noncontracting if there may be one exception, namely, a rule S → ε where S is the start symbol and ε the empty string, and furthermore, S never occurs in the right-hand side of any rule.
Combinatory categorial grammarCombinatory categorial grammar (CCG) is an efficiently parsable, yet linguistically expressive grammar formalism. It has a transparent interface between surface syntax and underlying semantic representation, including predicate–argument structure, quantification and information structure. The formalism generates constituency-based structures (as opposed to dependency-based ones) and is therefore a type of phrase structure grammar (as opposed to a dependency grammar).
Recursively enumerable languageIn mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable, semidecidable, Turing-acceptable or Turing-recognizable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language. Recursively enumerable languages are known as type-0 languages in the Chomsky hierarchy of formal languages.
Production (computer science)A production or production rule in computer science is a rewrite rule specifying a symbol substitution that can be recursively performed to generate new symbol sequences. A finite set of productions is the main component in the specification of a formal grammar (specifically a generative grammar). The other components are a finite set of nonterminal symbols, a finite set (known as an alphabet) of terminal symbols that is disjoint from and a distinguished symbol that is the start symbol.
Backus–Naur formIn computer science, Backus–Naur form (ˌbækəs_ˈnaʊər) or Backus normal form (BNF) is a metasyntax notation for context-free grammars, often used to describe the syntax of languages used in computing, such as computer programming languages, document formats, instruction sets and communication protocols. It is applied wherever exact descriptions of languages are needed: for instance, in official language specifications, in manuals, and in textbooks on programming language theory.