Summary
In chemistry, catenation is the bonding of atoms of the same element into a series, called a chain. A chain or a ring shape may be open if its ends are not bonded to each other (an open-chain compound), or closed if they are bonded in a ring (a cyclic compound). The words to catenate and catenation reflect the Latin root catena, "chain". Catenation occurs most readily with carbon, which forms covalent bonds with other carbon atoms to form longer chains and structures. This is the reason for the presence of the vast number of organic compounds in nature. Carbon is most well known for its properties of catenation, with organic chemistry essentially being the study of catenated carbon structures (and known as catenae). Carbon chains in biochemistry combine any of various other elements, such as hydrogen, oxygen, and biometals, onto the backbone of carbon. However, carbon is by no means the only element capable of forming such catenae, and several other main-group elements are capable of forming an expansive range of catenae, including hydrogen, boron, silicon, phosphorus, sulfur and halogens. The ability of an element to catenate is primarily based on the bond energy of the element to itself, which decreases with more diffuse orbitals (those with higher azimuthal quantum number) overlapping to form the bond. Hence, carbon, with the least diffuse valence shell p orbital is capable of forming longer p-p sigma bonded chains of atoms than heavier elements which bond via higher valence shell orbitals. Catenation ability is also influenced by a range of steric and electronic factors, including the electronegativity of the element in question, the molecular orbital n and the ability to form different kinds of covalent bonds. For carbon, the sigma overlap between adjacent atoms is sufficiently strong that perfectly stable chains can be formed. With other elements this was once thought to be extremely difficult in spite of plenty of evidence to the contrary. Theories of the structure of water involve three-dimensional networks of tetrahedra and chains and rings, linked via hydrogen bonding.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.