Choquet theoryIn mathematics, Choquet theory, named after Gustave Choquet, is an area of functional analysis and convex analysis concerned with measures which have support on the extreme points of a convex set C. Roughly speaking, every vector of C should appear as a weighted average of extreme points, a concept made more precise by generalizing the notion of weighted average from a convex combination to an integral taken over the set E of extreme points.
Convex geometryIn mathematics, convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral geometry, linear programming, probability theory, game theory, etc. According to the Mathematics Subject Classification MSC2010, the mathematical discipline Convex and Discrete Geometry includes three major branches: general convexity polytopes and polyhedra discrete geometry (though only portions of the latter two are included in convex geometry).
Half-space (geometry)In geometry, a half-space is either of the two parts into which a plane divides the three-dimensional Euclidean space. If the space is two-dimensional, then a half-space is called a half-plane (open or closed). A half-space in a one-dimensional space is called a half-line or ray. More generally, a half-space is either of the two parts into which a hyperplane divides an affine space. That is, the points that are not incident to the hyperplane are partitioned into two convex sets (i.e.
AntimatroidIn mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids are commonly axiomatized in two equivalent ways, either as a set system modeling the possible states of such a process, or as a formal language modeling the different sequences in which elements may be included.
Support functionIn mathematics, the support function hA of a non-empty closed convex set A in describes the (signed) distances of supporting hyperplanes of A from the origin. The support function is a convex function on . Any non-empty closed convex set A is uniquely determined by hA. Furthermore, the support function, as a function of the set A, is compatible with many natural geometric operations, like scaling, translation, rotation and Minkowski addition. Due to these properties, the support function is one of the most central basic concepts in convex geometry.