Concept

Dirichlet function

In mathematics, the Dirichlet function is the indicator function 1Q or of the set of rational numbers Q, i.e. 1Q(x) = 1 if x is a rational number and 1Q(x) = 0 if x is not a rational number (i.e. an irrational number). It is named after the mathematician Peter Gustav Lejeune Dirichlet. It is an example of pathological function which provides counterexamples to many situations. The Dirichlet function is nowhere continuous. Its restrictions to the set of rational numbers and to the set of irrational numbers are constants and therefore continuous. The Dirichlet function is an archetypal example of the Blumberg theorem. The Dirichlet function can be constructed as the double pointwise limit of a sequence of continuous functions, as follows: for integer j and k. This shows that the Dirichlet function is a Baire class 2 function. It cannot be a Baire class 1 function because a Baire class 1 function can only be discontinuous on a meagre set. For any real number x and any positive rational number T, 1Q(x + T) = 1Q(x). The Dirichlet function is therefore an example of a real periodic function which is not constant but whose set of periods, the set of rational numbers, is a dense subset of R. The Dirichlet function is not Riemann-integrable on any segment of R whereas it is bounded because the set of its discontinuity points is not negligible (for the Lebesgue measure). The Dirichlet function provides a counterexample showing that the monotone convergence theorem is not true in the context of the Riemann integral. The Dirichlet function is Lebesgue-integrable on R and its integral over R is zero because it is zero except on the set of rational numbers which is negligible (for the Lebesgue measure).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MATH-105(a): Advanced analysis II - vector analysis
Etudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
Related lectures (19)
Boolean Hidden Matching Problem
Explores the Boolean Hidden Matching Problem, focusing on distinguishing messages with negligible probability.
Derivatives and Continuity
Explores derivatives, reciprocal functions, and continuity of functions with examples and formulas.
Local Zeta Functions
Covers the classification of comport p-adic fields using integration and Igusa's local zeta functions.
Show more
Related publications (1)
Related concepts (3)
Lebesgue integration
In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X-axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.
Nowhere continuous function
In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some such that for every we can find a point such that and . Therefore, no matter how close we get to any fixed point, there are even closer points at which the function takes not-nearby values.
Limit of a function
Although the function \tfrac{\sin x}{x} is not defined at zero, as x becomes closer and closer to zero, \tfrac{\sin x}{x} becomes arbitrarily close to 1. In other words, the limit of \tfrac{\sin x}{x}, as x approaches zero, equals 1. In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input. Formal definitions, first devised in the early 19th century, are given below. Informally, a function f assigns an output f(x) to every input x.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.