Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
H.323 is a recommendation from the ITU Telecommunication Standardization Sector (ITU-T) that defines the protocols to provide audio-visual communication sessions on any packet network. The H.323 standard addresses call signaling and control, multimedia transport and control, and bandwidth control for point-to-point and multi-point conferences. It is widely implemented by voice and videoconferencing equipment manufacturers, is used within various Internet real-time applications such as GnuGK and NetMeeting and is widely deployed worldwide by service providers and enterprises for both voice and video services over IP networks. It is a part of the ITU-T H.32x series of protocols, which also address multimedia communications over ISDN, the PSTN or SS7, and 3G mobile networks. H.323 call signaling is based on the ITU-T Recommendation Q.931 protocol and is suited for transmitting calls across networks using a mixture of IP, PSTN, ISDN, and QSIG over ISDN. A call model, similar to the ISDN call model, eases the introduction of IP telephony into existing networks of ISDN-based PBX systems, including transitions to IP-based PBXs. Within the context of H.323, an IP-based PBX might be a gatekeeper or other call control element which provides service to telephones or videophones. Such a device may provide or facilitate both basic services and supplementary services, such as call transfer, park, pick-up, and hold. The first version of H.323 was published by the ITU in November 1996 with an emphasis of enabling videoconferencing capabilities over a local area network (LAN), but was quickly adopted by the industry as a means of transmitting voice communication over a variety of IP networks, including WANs and the Internet (see VoIP). Over the years, H.323 has been revised and re-published with enhancements necessary to better enable both voice and video functionality over packet-switched networks, with each version being backward-compatible with the previous version. Recognizing that H.
Serge Vaudenay, Gildas Avoine, Martin Benjamin, Srdan Capkun, Aslan Tchamkerten
Pascal Frossard, Sergio Mena, Stefano D'Aronco