Air or Wind is one of the four classical elements along with water, earth and fire in ancient Greek philosophy and in Western alchemy.
According to Plato, it is associated with the octahedron; air is considered to be both hot and wet. The ancient Greeks used two words for air: aer meant the dim lower atmosphere, and aether meant the bright upper atmosphere above the clouds. Plato, for instance writes that "So it is with air: there is the brightest variety which we call aether, the muddiest which we call mist and darkness, and other kinds for which we have no name...." Among the early Greek Pre-Socratic philosophers, Anaximenes (mid-6th century BCE) named air as the arche. A similar belief was attributed by some ancient sources to Diogenes Apolloniates (late 5th century BCE), who also linked air with intelligence and soul (psyche), but other sources claim that his arche was a substance between air and fire. Aristophanes parodied such teachings in his play The Clouds by putting a prayer to air in the mouth of Socrates.
Air was one of many archai proposed by the Pre-socratics, most of whom tried to reduce all things to a single substance. However, Empedocles of Acragas (c. 495-c. 435 BCE) selected four archai for his four roots: air, fire, water, and earth. Ancient and modern opinions differ as to whether he identified air by the divine name Hera, Aidoneus or even Zeus. Empedocles’ roots became the four classical elements of Greek philosophy. Plato (427–347 BCE) took over the four elements of Empedocles. In the Timaeus, his major cosmological dialogue, the Platonic solid associated with air is the octahedron which is formed from eight equilateral triangles. This places air between fire and water which Plato regarded as appropriate because it is intermediate in its mobility, sharpness, and ability to penetrate. He also said of air that its minuscule components are so smooth that one can barely feel them.
Plato's student Aristotle (384–322 BCE) developed a different explanation for the elements based on pairs of qualities.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The classical elements typically refer to earth, water, air, fire, and (later) aether which were proposed to explain the nature and complexity of all matter in terms of simpler substances. Ancient cultures in Greece, Tibet, and India had similar lists which sometimes referred, in local languages, to "air" as "wind" and the fifth element as "void". These different cultures and even individual philosophers had widely varying explanations concerning their attributes and how they related to observable phenomena as well as cosmology.
Water is one of the classical elements in ancient Greek philosophy along with air, earth and fire, in the Asian Indian system Panchamahabhuta, and in the Chinese cosmological and physiological system Wu Xing. In contemporary esoteric traditions, it is commonly associated with the qualities of emotion and intuition. Water was one of many archai proposed by the Pre-socratics, most of whom tried to reduce all things to a single substance. However, Empedocles of Acragas (c. 495 – c.
Earth is one of the classical elements, in some systems being one of the four along with air, fire, and water. Earth is one of the four classical elements in ancient Greek philosophy and science. It was commonly associated with qualities of heaviness, matter and the terrestrial world. Due to the hero cults, and chthonic underworld deities, the element of earth is also associated with the sensual aspects of both life and death in later occultism. Empedocles of Acragas (c. 495 – c.
Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assu ...
Characterizing and understanding spatial variability in water quality for a variety of chemical elements is an issue for present and future water resource management. However, most studies of spatial variability in water quality focus on a single element a ...
Proteins, the central building blocks of life, play pivotal roles in nearly every biological function. To do so, these macromolecular structures interact with their surrounding environment in complex ways, leading to diverse functional behaviors. The predi ...