Concept

Infrabarrelled space

In functional analysis, a discipline within mathematics, a locally convex topological vector space (TVS) is said to be infrabarrelled (also spelled infrabarreled) if every bounded barrel is a neighborhood of the origin. If is a Hausdorff locally convex space then the canonical injection from into its bidual is a topological embedding if and only if is infrabarrelled. Every quasi-complete infrabarrelled space is barrelled. Every barrelled space is infrabarrelled. A closed vector subspace of an infrabarrelled space is, however, not necessarily infrabarrelled. Every product and locally convex direct sum of any family of infrabarrelled spaces is infrabarrelled. Every separated quotient of an infrabarrelled space is infrabarrelled.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.