The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. It is a divide-and-conquer algorithm that reduces the multiplication of two n-digit numbers to three multiplications of n/2-digit numbers and, by repeating this reduction, to at most single-digit multiplications. It is therefore asymptotically faster than the traditional algorithm, which performs single-digit products.
The Karatsuba algorithm was the first multiplication algorithm asymptotically faster than the quadratic "grade school" algorithm.
The Toom–Cook algorithm (1963) is a faster generalization of Karatsuba's method, and the Schönhage–Strassen algorithm (1971) is even faster, for sufficiently large n.
The standard procedure for multiplication of two n-digit numbers requires a number of elementary operations proportional to , or in big-O notation. Andrey Kolmogorov conjectured that the traditional algorithm was asymptotically optimal, meaning that any algorithm for that task would require elementary operations.
In 1960, Kolmogorov organized a seminar on mathematical problems in cybernetics at the Moscow State University, where he stated the conjecture and other problems in the complexity of computation. Within a week, Karatsuba, then a 23-year-old student, found an algorithm that multiplies two n-digit numbers in elementary steps, thus disproving the conjecture. Kolmogorov was very excited about the discovery; he communicated it at the next meeting of the seminar, which was then terminated. Kolmogorov gave some lectures on the Karatsuba result at conferences all over the world (see, for example, "Proceedings of the International Congress of Mathematicians 1962", pp. 351–356, and also "6 Lectures delivered at the International Congress of Mathematicians in Stockholm, 1962") and published the method in 1962, in the Proceedings of the USSR Academy of Sciences. The article had been written by Kolmogorov and contained two results on multiplication, Karatsuba's algorithm and a separate result by Yuri Ofman; it listed "A.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
The following tables list the computational complexity of various algorithms for common mathematical operations. Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, below stands in for the complexity of the chosen multiplication algorithm. This table lists the complexity of mathematical operations on integers.
A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Efficient multiplication algorithms have existed since the advent of the decimal system. If a positional numeral system is used, a natural way of multiplying numbers is taught in schools as long multiplication, sometimes called grade-school multiplication, sometimes called the Standard Algorithm: multiply the multiplicand by each digit of the multiplier and then add up all the properly shifted results.
Covers the design of datapath subsystems, focusing on basic combinational components and various implementation options for adders, multipliers, and shifters.
This paper develops a fast algorithm for computing the equilibrium assignment with the perturbed utility route choice (PURC) model. Without compromise, this allows the significant advantages of the PURC model to be used in large-scale applications. We form ...
PurposeMagnetic resonance imaging (MRI) artifacts are originated from various sources including instability of an magnetic resonance (MR) system, patient motion, inhomogeneities of gradient fields, and so on. Such MRI artifacts are usually considered as ir ...
Wiley2017
Driven by the demand for real-time processing and the need to minimize latency in AI algorithms, edge computing has experienced remarkable progress. Decision-making AI applications stand out for their heavy reliance on data-centric operations, predominantl ...