Concept

Cantellated 24-cells

In four-dimensional geometry, a cantellated 24-cell is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation) of the regular 24-cell. There are 2 unique degrees of cantellations of the 24-cell including permutations with truncations. The cantellated 24-cell or small rhombated icositetrachoron is a uniform 4-polytope. The boundary of the cantellated 24-cell is composed of 24 truncated octahedral cells, 24 cuboctahedral cells and 96 triangular prisms. Together they have 288 triangular faces, 432 square faces, 864 edges, and 288 vertices. When the cantellation process is applied to 24-cell, each of the 24 octahedra becomes a small rhombicuboctahedron. In addition however, since each octahedra's edge was previously shared with two other octahedra, the separating edges form the three parallel edges of a triangular prism - 96 triangular prisms, since the 24-cell contains 96 edges. Further, since each vertex was previously shared with 12 faces, the vertex would split into 12 (24*12=288) new vertices. Each group of 12 new vertices forms a cuboctahedron. The Cartesian coordinates of the vertices of the cantellated 24-cell having edge length 2 are all permutations of coordinates and sign of: (0, , , 2+2) (1, 1+, 1+, 1+2) The permutations of the second set of coordinates coincide with the vertices of an inscribed runcitruncated tesseract. The dual configuration has all permutations and signs of: (0,2,2+,2+) (1,1,1+,3+) The 24 small rhombicuboctahedra are joined to each other via their triangular faces, to the cuboctahedra via their axial square faces, and to the triangular prisms via their off-axial square faces. The cuboctahedra are joined to the triangular prisms via their triangular faces. Each triangular prism is joined to two cuboctahedra at its two ends. A half-symmetry construction of the cantellated 24-cell, also called a cantic snub 24-cell, as , has an identical geometry, but its triangular faces are further subdivided. The cantellated 24-cell has 2 positions of triangular faces in ratio of 96 and 192, while the cantic snub 24-cell has 3 positions of 96 triangles.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.