Cache coherenceIn computer architecture, cache coherence is the uniformity of shared resource data that ends up stored in multiple local caches. When clients in a system maintain caches of a common memory resource, problems may arise with incoherent data, which is particularly the case with CPUs in a multiprocessing system. In the illustration on the right, consider both the clients have a cached copy of a particular memory block from a previous read.
Uniprocessor systemA uniprocessor system is defined as a computer system that has a single central processing unit that is used to execute computer tasks. As more and more modern software is able to make use of multiprocessing architectures, such as SMP and MPP, the term uniprocessor is therefore used to distinguish the class of computers where all processing tasks share a single CPU. Most desktop computers are shipped with multiprocessing architectures since the 2010s. As such, this kind of system uses a type of architecture that is based on a single computing unit.
Massively parallelMassively parallel is the term for using a large number of computer processors (or separate computers) to simultaneously perform a set of coordinated computations in parallel. GPUs are massively parallel architecture with tens of thousands of threads. One approach is grid computing, where the processing power of many computers in distributed, diverse administrative domains is opportunistically used whenever a computer is available. An example is BOINC, a volunteer-based, opportunistic grid system, whereby the grid provides power only on a best effort basis.
Uniform memory accessUniform memory access (UMA) is a shared memory architecture used in parallel computers. All the processors in the UMA model share the physical memory uniformly. In an UMA architecture, access time to a memory location is independent of which processor makes the request or which memory chip contains the transferred data. Uniform memory access computer architectures are often contrasted with non-uniform memory access (NUMA) architectures. In the NUMA architecture, each processor may use a private cache.
Distributed memoryIn computer science, distributed memory refers to a multiprocessor computer system in which each processor has its own private memory. Computational tasks can only operate on local data, and if remote data are required, the computational task must communicate with one or more remote processors. In contrast, a shared memory multiprocessor offers a single memory space used by all processors. Processors do not have to be aware where data resides, except that there may be performance penalties, and that race conditions are to be avoided.
Beowulf clusterA Beowulf cluster is a computer cluster of what are normally identical, commodity-grade computers networked into a small local area network with libraries and programs installed which allow processing to be shared among them. The result is a high-performance parallel computing cluster from inexpensive personal computer hardware. The name Beowulf originally referred to a specific computer built in 1994 by Thomas Sterling and Donald Becker at NASA. The name "Beowulf" comes from the Old English epic poem of the same name.