In mathematics, the graph Fourier transform is a mathematical transform which eigendecomposes the Laplacian matrix of a graph into eigenvalues and eigenvectors. Analogously to the classical Fourier transform, the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis. The Graph Fourier transform is important in spectral graph theory. It is widely applied in the recent study of graph structured learning algorithms, such as the widely employed convolutional networks. Given an undirected weighted graph , where is the set of nodes with ( being the number of nodes) and is the set of edges, a graph signal is a function defined on the vertices of the graph . The signal maps every vertex to a real number . Any graph signal can be projected on the eigenvectors of the Laplacian matrix . Let and be the eigenvalue and eigenvector of the Laplacian matrix (the eigenvalues are sorted in an increasing order, i.e., ), the graph Fourier transform (GFT) of a graph signal on the vertices of is the expansion of in terms of the eigenfunctions of . It is defined as: where . Since is a real symmetric matrix, its eigenvectors form an orthogonal basis. Hence an inverse graph Fourier transform (IGFT) exists, and it is written as: Analogously to the classical Fourier transform, graph Fourier transform provides a way to represent a signal in two different domains: the vertex domain and the graph spectral domain. Note that the definition of the graph Fourier transform and its inverse depend on the choice of Laplacian eigenvectors, which are not necessarily unique. The eigenvectors of the normalized Laplacian matrix are also a possible base to define the forward and inverse graph Fourier transform. The Parseval relation holds for the graph Fourier transform, that is, for any This gives us Parseval's identity: The definition of convolution between two functions and cannot be directly applied to graph signals, because the signal translation is not defined in the context of graphs.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.