Concept

Chronology protection conjecture

The chronology protection conjecture is a hypothesis first proposed by Stephen Hawking that laws of physics beyond those of standard general relativity prevent time travel on all but microscopic scales - even when the latter theory states that it should be possible (such as in scenarios where faster than light travel is allowed). The permissibility of time travel is represented mathematically by the existence of closed timelike curves in some solutions to the field equations of general relativity. The chronology protection conjecture should be distinguished from chronological censorship under which every closed timelike curve passes through an event horizon, which might prevent an observer from detecting the causal violation (also known as chronology violation). In a 1992 paper, Hawking uses the metaphorical device of a "Chronology Protection Agency" as a personification of the aspects of physics that make time travel impossible at macroscopic scales, thus apparently preventing temporal paradoxes. He says: It seems that there is a Chronology Protection Agency which prevents the appearance of closed timelike curves and so makes the universe safe for historians. The idea of the Chronology Protection Agency appears to be drawn playfully from the Time Patrol or Time Police concept, which has been used in many works of science fiction such as Poul Anderson's series of Time Patrol stories or Isaac Asimov's novel The End of Eternity, or in the television series Doctor Who. "The Chronology Protection Case" by Paul Levinson, published after Hawking's paper, posits a universe that goes so far as to murder any scientists who are close to inventing any means of time travel. Many attempts to generate scenarios for closed timelike curves have been suggested, and the theory of general relativity does allow them in certain circumstances. Some theoretical solutions in general relativity that contain closed timelike curves would require an infinite universe with certain features that our universe does not appear to have, such as the universal rotation of the Gödel metric or the rotating cylinder of infinite length known as a Tipler cylinder.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (6)
Problems on Timelike and Spacelike Vectors
Covers exercises on timelike and spacelike vectors from Problem Set 2.
Hydraulic Installations: Basic Data
Explores hydraulic installations' basic data, including evaporation values, flow rate measurements, and flood estimation methods.
Hydraulic Installations: Basic Data and Flow Rate Characterization
Explores hydraulic installations, basic data, and flow rate classification methods.
Show more
Related publications (8)

Less Conservatism, Stronger Robustness: Iterative Robust Gain-Scheduled Path Following Control of Autonomous Bus With Unstructured and Changing Dynamics

Denis Gillet, Man Shi, Jianwei Li

Path-following control is a critical technology for autonomous vehicles. However, time-varying parameters, parametric uncertainties, external disturbances, and complicated environments significantly challenge autonomous driving. We propose an iterative rob ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Motor state transitions and Breathing in Brain Machine Interfaces

Bastien Orset

Brain-Machine interfaces aim to create a direct neural link between user's brain and machines. This goal has pushed scientists to investigate a large spectrum of applications in the realm of assistive and rehabilitation technologies. However, despite great ...
EPFL2021

Experiment and Machine Protection from Fast Losses caused by Crab Cavities in the High Luminosity LHC

Andrea Santamaría García

The High Luminosity Large Hadron Collider (HL-LHC) upgrade aims for a tenfold increase in integrated luminosity compared to the nominal Large Hadron Collider (LHC), and for operation at a leveled luminosity five times higher than the nominal LHC peak lumin ...
EPFL2018
Show more
Related concepts (11)
Novikov self-consistency principle
The Novikov self-consistency principle, also known as the Novikov self-consistency conjecture and Larry Niven's law of conservation of history, is a principle developed by Russian physicist Igor Dmitriyevich Novikov in the mid-1980s. Novikov intended it to solve the problem of paradoxes in time travel, which is theoretically permitted in certain solutions of general relativity that contain what are known as closed timelike curves.
Temporal paradox
A temporal paradox, time paradox, or time travel paradox, is a paradox, an apparent contradiction, or logical contradiction associated with the idea of time travel or other foreknowledge of the future. While the notion of time travel to the future complies with current understanding of physics via relativistic time dilation, temporal paradoxes arise from circumstances involving hypothetical time travel to the past – and are often used to demonstrate its impossibility.
Time travel
Time travel is the hypothetical activity of traveling into the past or future. Time travel is a widely recognized concept in philosophy and fiction, particularly science fiction. In fiction, time travel is typically achieved through the use of a hypothetical device known as a time machine. The idea of a time machine was popularized by H. G. Wells' 1895 novel The Time Machine. It is uncertain if time travel to the past is physically possible, and such travel, if at all feasible, may give rise to questions of causality.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.