Gaston JuliaGaston Maurice Julia (3 February 1893 – 19 March 1978) was a French Algerian mathematician who devised the formula for the Julia set. His works were popularized by French mathematician Benoit Mandelbrot; the Julia and Mandelbrot fractals are closely related. He founded, independently with Pierre Fatou, the modern theory of holomorphic dynamics. Julia was born in the Algerian town of Sidi Bel Abbes, at the time governed by the French. During his youth, he had an interest in mathematics and music.
External rayAn external ray is a curve that runs from infinity toward a Julia or Mandelbrot set. Although this curve is only rarely a half-line (ray) it is called a ray because it is an image of a ray. External rays are used in complex analysis, particularly in complex dynamics and geometric function theory. External rays were introduced in Douady and Hubbard's study of the Mandelbrot set Criteria for classification : plane : parameter or dynamic map bifurcation of dynamic rays Stretching landing External rays of (connected) Julia sets on dynamical plane are often called dynamic rays.
Pierre FatouPierre Joseph Louis Fatou (28 February 1878 – 9 August 1929) was a French mathematician and astronomer. He is known for major contributions to several branches of analysis. The Fatou lemma and the Fatou set are named after him. Pierre Fatou's parents were Prosper Ernest Fatou (1832-1891) and Louise Eulalie Courbet (1844-1911), both of whom were in the military. Pierre's family would have liked for him to enter the military as well, but his health was not sufficiently good for him to pursue a military career.
Julia setIn the context of complex dynamics, a branch of mathematics, the Julia set and the Fatou set are two complementary sets (Julia "laces" and Fatou "dusts") defined from a function. Informally, the Fatou set of the function consists of values with the property that all nearby values behave similarly under repeated iteration of the function, and the Julia set consists of values such that an arbitrarily small perturbation can cause drastic changes in the sequence of iterated function values.
Mandelbrot setThe Mandelbrot set (ˈmændəlbroʊt,_-brɒt) is a two dimensional set with a relatively simple definition that exhibits great complexity, especially as it is magnified. It is popular for its aesthetic appeal and fractal structures. The set is defined in the complex plane as the complex numbers for which the function does not diverge to infinity when iterated starting at , i.e., for which the sequence , , etc., remains bounded in absolute value. This set was first defined and drawn by Robert W.
Iterated functionIn mathematics, an iterated function is a function X → X (that is, a function from some set X to itself) which is obtained by composing another function f : X → X with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right: with the circle‐shaped symbol of function composition.
FractalIn mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar.
Rational functionIn mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field K. In this case, one speaks of a rational function and a rational fraction over K. The values of the variables may be taken in any field L containing K. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is L.