In quantum physics, entanglement depth characterizes the strength of multiparticle entanglement. An entanglement depth means that the quantum state of a particle ensemble cannot be described under the assumption that particles interacted with each other only in groups having fewer than particles. It has been used to characterize the quantum states created in experiments with cold gases. Entanglement depth appeared first in the context of cold gases, together with entanglement criteria that made it possible to bound it from below based on measured quantities. We will now present a general definition based on convex sets of quantum states. First, we will define -producibility. Let us consider a pure state that is the tensor product of multi-particle quantum states The pure state is said to be -producible if all are states of at most particles. A mixed state is called -producible, if it is a mixture of pure states that are all at most -producible. The -producible mixed states form a convex set. A quantum state contains at least genuine multiparticle entanglement of particles, if it is not -producible. Finally, a quantum state has an entanglement depth , if it is -producible, but not -producible.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.