Concept

Attention (machine learning)

Related courses (26)
EE-608: Deep Learning For Natural Language Processing
The Deep Learning for NLP course provides an overview of neural network based methods applied to text. The focus is on models particularly suited to the properties of human language, such as categori
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
CS-423: Distributed information systems
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
CIVIL-459: Deep learning for autonomous vehicles
Deep Learning (DL) is the subset of Machine learning reshaping the future of transportation and mobility. In this class, we will show how DL can be used to teach autonomous vehicles to detect objects,
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
CS-552: Modern natural language processing
Natural language processing is ubiquitous in modern intelligent technologies, serving as a foundation for language translators, virtual assistants, search engines, and many more. In this course, stude
BIO-322: Introduction to machine learning for bioengineers
Students understand basic concepts and methods of machine learning. They can describe them in mathematical terms and can apply them to data using a high-level programming language (julia/python/R).
EE-311: Fundamentals of machine learning
Ce cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
PHYS-754: Lecture series on scientific machine learning
This lecture presents ongoing work on how scientific questions can be tackled using machine learning. Machine learning enables extracting knowledge from data computationally and in an automatized way.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.