Related concepts (24)
MKS system of units
The MKS system of units is a physical system of measurement that uses the metre, kilogram, and second (MKS) as base units. The modern International System of Units (SI) was originally created as a formalization of the MKS system, and although the SI has been redefined several times since then and is now based entirely on fundamental physical constants, it still closely approximates the original MKS system for most practical purposes. By the mid-19th century, there was a demand by scientists to define a coherent system of units.
SI derived unit
SI derived units are units of measurement derived from the seven SI base unit specified by the International System of Units (SI). They can be expressed as a product (or ratio) of one or more of the base units, possibly scaled by an appropriate power of exponentiation (see: Buckingham π theorem). Some are dimensionless, as when the units cancel out in ratios of like quantities.
Pressure head
In fluid mechanics, pressure head is the height of a liquid column that corresponds to a particular pressure exerted by the liquid column on the base of its container. It may also be called static pressure head or simply static head (but not static head pressure). Mathematically this is expressed as: where is pressure head (which is actually a length, typically in units of meters or centimetres of water) is fluid pressure (i.e. force per unit area, typically expressed in pascals) is the specific weight (i.
Mass versus weight
In common usage, the mass of an object is often referred to as its weight, though these are in fact different concepts and quantities. Nevertheless, one object will always weigh more than another with less mass if both are subject to the same gravity (i.e. the same gravitational field strength). In scientific contexts, mass is the amount of "matter" in an object (though "matter" may be difficult to define), but weight is the force exerted on an object's matter by gravity.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.