Summary
In mathematics, a locally finite measure is a measure for which every point of the measure space has a neighbourhood of finite measure. Let be a Hausdorff topological space and let be a -algebra on that contains the topology (so that every open set is a measurable set, and is at least as fine as the Borel -algebra on ). A measure/signed measure/complex measure defined on is called locally finite if, for every point of the space there is an open neighbourhood of such that the -measure of is finite. In more condensed notation, is locally finite if and only if Any probability measure on is locally finite, since it assigns unit measure to the whole space. Similarly, any measure that assigns finite measure to the whole space is locally finite. Lebesgue measure on Euclidean space is locally finite. By definition, any Radon measure is locally finite. The counting measure is sometimes locally finite and sometimes not: the counting measure on the integers with their usual discrete topology is locally finite, but the counting measure on the real line with its usual Borel topology is not.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (1)
MATH-502: Distribution and interpolation spaces
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
Related publications (8)
Related concepts (5)
Set function
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and A set function generally aims to subsets in some way. Measures are typical examples of "measuring" set functions. Therefore, the term "set function" is often used for avoiding confusion between the mathematical meaning of "measure" and its common language meaning.
Σ-finite measure
In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞), and a set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets each with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.
Borel set
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space X, the collection of all Borel sets on X forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel algebra on X is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets).
Show more