The metalog distribution is a flexible continuous probability distribution designed for ease of use in practice. Together with its transforms, the metalog family of continuous distributions is unique because it embodies all of following properties: virtually unlimited shape flexibility; a choice among unbounded, semi-bounded, and bounded distributions; ease of fitting to data with linear least squares; simple, closed-form quantile function (inverse CDF) equations that facilitate simulation; a simple, closed-form PDF; and Bayesian updating in closed form in light of new data. Moreover, like a Taylor series, metalog distributions may have any number of terms, depending on the degree of shape flexibility desired and other application needs. Applications where metalog distributions can be useful typically involve fitting empirical data, simulated data, or expert-elicited quantiles to smooth, continuous probability distributions. Fields of application are wide-ranging, and include economics, science, engineering, and numerous other fields. The metalog distributions, also known as the Keelin distributions, were first published in 2016 by Tom Keelin. The history of probability distributions can be viewed, in part, as a progression of developments towards greater flexibility in shape and bounds when fitting to data. The normal distribution was first published in 1756, and Bayes’ theorem in 1763. The normal distribution laid the foundation for much of the development of classical statistics. In contrast, Bayes' theorem laid the foundation for the state-of-information, belief-based probability representations. Because belief-based probabilities can take on any shape and may have natural bounds, probability distributions flexible enough to accommodate both were needed. Moreover, many empirical and experimental data sets exhibited shapes that could not be well matched by the normal or other continuous distributions. So began the search for continuous probability distributions with flexible shapes and bounds.